Search Results

Now showing 1 - 4 of 4
  • Item
    An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC
    (München : European Geopyhsical Union, 2016) Hermann, Markus; Weigelt, Andreas; Assmann, Denise; Pfeifer, Sascha; Müller, Thomas; Conrath, Thomas; Voigtländer, Jens; Heintzenberg, Jost; Wiedensohler, Alfred; Martinsson, Bengt G.; Deshler, Terry; Brenninkmeijer, Carl A.M.; Zahn, Andreas
    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System – Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130–1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.
  • Item
    In situ aerosol characterization at Cape Verde, Part 1: Particle number size distributions, hygroscopic growth and state of mixing of the marine and Saharan dust aerosol
    (Milton Park : Taylor & Francis, 2017) Schladitz, Alexander; Müller, Thomas; Nowak, Andreas; Kandler, Konrad; Lieke, Kirsten; Massling, Andreas; Wiedensohler, Alfred
    Particle number size distributions and hygroscopic properties of marine and Saharan dust aerosol were investigated during the SAMUM-2 field study at Cape Verde in winter 2008. Aitken and accumulation mode particles were mainly assigned to the marine aerosol, whereas coarse mode particles were composed of sea-salt and a variable fraction of Saharan mineral dust. A new methodical approach was used to derive hygroscopic growth and state of mixing for a particle size range (volume equivalent) from dpve = 26 nm to 10 μm. For hygroscopic particles with dpve < 100 nm, the median hygroscopicity parameter κ is 0.35. From 100 nm < dpve < 350 nm, κ increases to 0.65. For larger particles, κ at dpve = 350 nm was used. For nearly hydrophobic particles, κ is between 0 and 0.1 for dpve < 250 nm and decreases to 0 for dpve > 250 nm. The mixing state of Saharan dust in terms of the number fraction of nearly hydrophobic particles showed the highest variation and ranges from 0.3 to almost 1. This study was used to perform a successful mass closure at ambient conditions and demonstrates the important role of hygroscopic growth of large sea-salt particles.
  • Item
    Properties of cloud condensation nuclei (CCN) in the trade wind marine boundary layer of the western North Atlantic
    (München : European Geopyhsical Union, 2016) Kristensen, Thomas B.; Müller, Thomas; Kandler, Konrad; Benker, Nathalie; Hartmann, Markus; Prospero, Joseph M.; Wiedensohler, Alfred; Stratmann, Frank
    Cloud optical properties in the trade winds over the eastern Caribbean Sea have been shown to be sensitive to cloud condensation nuclei (CCN) concentrations. The objective of the current study was to investigate the CCN properties in the marine boundary layer (MBL) in the tropical western North Atlantic, in order to assess the respective roles of inorganic sulfate, organic species, long-range transported mineral dust and sea-salt particles. Measurements were carried out in June–July 2013, on the east coast of Barbados, and included CCN number concentrations, particle number size distributions and offline analysis of sampled particulate matter (PM) and sampled accumulation mode particles for an investigation of composition and mixing state with transmission electron microscopy (TEM) in combination with energy-dispersive X-ray spectroscopy (EDX). During most of the campaign, significant mass concentrations of long-range transported mineral dust was present in the PM, and influence from local island sources can be ruled out. The CCN and particle number concentrations were similar to what can be expected in pristine marine environments. The hygroscopicity parameter κ was inferred, and values in the range 0.2–0.5 were found during most of the campaign, with similar values for the Aitken and the accumulation mode. The accumulation mode particles studied with TEM were dominated by non-refractory material, and concentrations of mineral dust, sea salt and soot were too small to influence the CCN properties. It is highly likely that the CCN were dominated by a mixture of sulfate species and organic compounds.
  • Item
    Regional Saharan dust modelling during the SAMUM 2006 campaign
    (Milton Park : Taylor & Francis, 2017) Heinold, Bernd; Tegen, Ina; Esselborn, Michael; Kandler, Konrad; Knippertz, Peter; Müller, Detlef; Schladitz, Alexander; Tesche, Matthias; Weinzierl, Bernadett; Ansmann, Albert; Althausen, Dietrich; Laurent, Benoit; Massling, Andreas; Müller, Thomas; Petzold, Andreas; Schepanski, Kerstin; Wiedensohler, Alfred
    The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the unique comprehensive data set of near-source dust properties during the 2006SAMUMfield campaign, the performance of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations. However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust source placement by the model. While simulated winds and dust distributions are well matched for dust events caused by dry synoptic-scale dynamics, they are often misrepresented when dust emissions are caused by moist convection or influenced by small-scale topography that is not resolved by the model. In contrast to long-range dust transport, in the vicinity of source regions the model performance strongly depends on the correct prediction of the exact location of sources. Insufficiently resolved vertical grid spacing causes the absence of inversions in the model vertical profiles and likely explains the absence of the observed sharply defined dust layers.