Search Results

Now showing 1 - 2 of 2
  • Item
    Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses
    (Munich : EGU, 2018) Costabel, Stephan; Weidner, Christoph; Müller-Petke, Mike; Houben, Georg
    The capability of nuclear magnetic resonance (NMR) relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite), and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny–Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation in the gravel pack of groundwater wells.
  • Item
    Application of adiabatic pulses for magnetic Resonance Sounding – Pulse shapes and resolution
    (Amsterdam [u.a.] : Elsevier Science, 2020) Dlugosch, Raphael; Müller-Petke, Mike
    Magnetic Resonance Sounding (MRS) can image the spatial distribution of hydrologically relevant parameters in in the subsurface. However, the application of MRS is often limited by its low signal-to-noise ratio. The use of adiabatic excitation pulses show promising features to overcome this limitation. In this work, we study practical considerations when applying adiabatic pulses for MRS, i.e. calculation of the sensitivity kernel for varying pulse shapes and vertical resolution. The pulse shape is crucial for the performance of adiabatic pulses. We investigate the shapes of adiabatic pulses recorded during a MRS and observe small systematic deviations from the theoretical predicted pulse shape and variations between different pulse strengths. We show that the overall impact on the obtained sounding curve and inversion result was small. This enables to limit the time consuming modelling of the spin dynamic to one representative pulse shape, which significantly speeds up the calculation of the sensitivity kernel, necessary for the interpretation of MRS. Additionally, we show that on-resonance excitation generally outperforms adiabatic excitation concerning vertical resolution and depth of investigation (both up to a factor of two). This is true for a wide range of noise conditions. For a very shallow depth interval compared to the loop size, however, adiabatic excitation features improved imaging capabilities. © 2020 The Authors