Search Results

Now showing 1 - 4 of 4
  • Item
    A new method to measure real-world respiratory tract deposition of inhaled ambient black carbon
    (Amsterdam [u.a.] : Elsevier Science, 2019) Madueño, Leizel; Kecorius, Simonas; Löndahl, Jakob; Müller, Thomas; Pfeifer, Sascha; Haudek, Andrea; Mardoñez, Valeria; Wiedensohler, Alfred
    In this study, we present the development of a mobile system to measure real-world total respiratory tract deposition of inhaled ambient black carbon (BC). Such information can be used to supplement the existing knowledge on air pollution-related health effects, especially in the regions where the use of standard methods and intricate instrumentation is limited. The study is divided in two parts. Firstly, we present the design of portable system and methodology to evaluate the exhaled air BC content. We demonstrate that under real-world conditions, the proposed system exhibit negligible particle losses, and can additionally be used to determine the minute ventilation. Secondly, exemplary experimental data from the system is presented. A feasibility study was conducted in the city of La Paz, Bolivia. In a pilot experiment, we found that the cumulative total respiratory tract deposition dose over 1-h commuting trip would result in approximately 2.6 μg of BC. This is up to 5 times lower than the values obtained from conjectural approach (e.g. using physical parameters from previously reported worksheets). Measured total respiratory tract deposited BC fraction varied from 39% to 48% during walking and commuting inside a micro-bus, respectively. To the best of our knowledge, no studies focusing on experimental determination of real-world deposition dose of BC have been performed in developing regions. This can be especially important because the BC mass concentration is significant and determines a large fraction of particle mass concentration. In this work, we propose a potential method, recommendations, as well as the limitations in establishing an easy and relatively cheap way to estimate the respiratory tract deposition of BC. In this study we present a novel method to measure real-world respiratory tract deposition dose of Black Carbon. Results from a pilot study in La Paz, Bolivia, are presented. © 2019 The Authors
  • Item
    Long-term trends of black carbon and particle number concentration in the lower free troposphere in Central Europe
    (Berlin ; Heidelberg : Springer, 2021) Sun, Jia; Hermann, Markus; Yuan, Ye; Birmili, Wolfram; Collaud Coen, Martine; Weinhold, Kay; Madueño, Leizel; Poulain, Laurent; Tuch, Thomas; Ries, Ludwig; Sohmer, Ralf; Couret, Cedric; Frank, Gabriele; Brem, Benjamin Tobias; Gysel-Beer, Martin; Ma, Nan; Wiedensohler, Alfred
    Background: The implementation of emission mitigation policies in Europe over the last two decades has generally improved the air quality, which resulted in lower aerosol particle mass, particle number, and black carbon mass concentration. However, little is known whether the decreasing particle concentrations at a lower-altitude level can be observed in the free troposphere (FT), an important layer of the atmosphere, where aerosol particles have a longer lifetime and may affect climate dynamics. In this study, we used data from two high-Alpine observatories, Zugspitze-Schneefernerhaus (ZSF) and Jungfraujoch (JFJ), to assess the long-term trends on size-resolved particle number concentrations (PNCs) and equivalent black carbon (eBC) mass concentration separated for undisturbed lower FT conditions and under the influence of air from the planetary boundary layer (PBL) from 2009 to 2018. Results: The FT and PBL-influenced conditions were segregated for both sites. We found that the FT conditions in cold months were more prevalent than in warm months, while the measured aerosol parameters showed different seasonal patterns for the FT and PBL-influenced conditions. The pollutants in the PBL-influenced condition have a higher chance to be transported to high-altitudes due to the mountainous topography, leading to a higher concentration and more distinct seasonal variation, and vice versa. The long-term trends of the measured aerosol parameters were evaluated and the decreased aerosol concentrations were observed for both FT and PBL-influenced conditions. The observed decreasing trends in eBC concentration in the PBL-influenced condition are well consistent with the reported trends in total BC emission in Germany and Switzerland. The decreased concentrations in the FT condition suggest that the background aerosol concentration in the lower FT over Central Europe has correspondingly decreased. The change of back trajectories in the FT condition at ZSF and JFJ was further evaluated to investigate the other possible drivers for the decreasing trends. Conclusions: The background aerosol concentration in the lower FT over Central Europe has significantly decreased during 2009–2018. The implementation of emission mitigation policies is the most decisive factor and the decrease of the regional airmass occurrence over Central Europe also has contributed to the decreasing trends. © 2021, The Author(s).
  • Item
    Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines
    (Oxford [u.a.] : Elsevier, 2017) Kecorius, Simonas; Madueño, Leizel; Vallar, Edgar; Alas, Honey; Betito, Grace; Birmili, Wolfram; Cambaliza, Maria Obiminda; Catipay, Grethyl; Gonzaga-Cayetano, Mylene; Galvez, Maria Cecilia; Lorenzo, Genie; Müller, Thomas; Simpas, James B.; Tamayo, Everlyn Gayle; Wiedensohler, Alfred
    Ultrafine soot particles (black carbon, BC) in urban environments are related to adverse respiratory and cardiovascular effects, increased cases of asthma and premature deaths. These problems are especially pronounced in developing megacities in South-East Asia, Latin America, and Africa, where unsustainable urbanization ant outdated environmental protection legislation resulted in severe degradation of urban air quality in terms of black carbon emission. Since ultrafine soot particles do often not lead to enhanced PM10 and PM2.5 mass concentration, the risks related to ultrafine particle pollution may therefore be significantly underestimated compared to the contribution of secondary aerosol constituents. To increase the awareness of the potential toxicological relevant problems of ultrafine black carbon particles, we conducted a case study in Metro Manila, the capital of the Philippines. Here, we present a part of the results from a detailed field campaign, called Manila Aerosol Characterization Experiment (MACE, 2015). Measurements took place from May to June 2015 with the focus on the state of mixing of aerosol particles. The results were alarming, showing the abundance of externally mixed refractory particles (soot proxy) at street site with a maximum daily number concentration of approximately 15000 #/cm3. That is up to 10 times higher than in cities of Western countries. We also found that the soot particle mass contributed from 55 to 75% of total street site PM2.5. The retrieved refractory particle number size distribution appeared to be a superposition of 2 ultrafine modes at 20 and 80 nm with a corresponding contribution to the total refractory particle number of 45 and 55%, respectively. The particles in the 20 nm mode were most likely ash from metallic additives in lubricating oil, tiny carbonaceous particles and/or nucleated and oxidized organic polymers, while bigger ones (80 nm) were soot agglomerates. To the best of the authors’ knowledge, no other studies reported such high number concentration of ultrafine refractory particles under ambient conditions. Inverse modeling of emission factors of refractory particle number size distributions revealed that diesel-fed public utility Jeepneys, commonly used for public transportation, are responsible for 94% of total roadside emitted refractory particle mass. The observed results showed that the majority of urban pollution in Metro Manila is dominated by carbonaceous aerosol. This suggests that PM10 or PM2.5 metrics do not fully describe possible health related effects in this kind of urban environments. Extremely high concentrations of ultrafine particles have been and will continue to induce adverse health related effects, because of their potential toxicity. We imply that in megacities, where the major fraction of particulates originates from the transport sector, PM10 or PM2.5 mass concentration should be complemented by legislative measurements of equivalent black carbon mass concentration.
  • Item
    From Transfer to Knowledge Co-Production: A Transdisciplinary Research Approach to Reduce Black Carbon Emissions in Metro Manila, Philippines
    (Basel : MDPI, 2020) Tõnisson, Liina; Kunz, Yvonne; Kecorius, Simonas; Madueño, Leizel; Tamayo, Everlyn Gayle; Casanova, Dang Marviluz; Zhao, Qi; Schikowski, Tamara; Hornidge, Anna-Katharina; Wiedensohler, Alfred; Macke, Andreas
    Air pollution, which kills an estimated 7 million people every year, is one of the greatest environmental health risks of our times. Finding solutions to this threat poses challenges to practitioners and policymakers alike. Increasing awareness on the benefits of transdisciplinary research in solution-oriented sustainable development projects has led to the establishment of the research project “A Transdisciplinary Approach to Mitigate Emissions of Black Carbon” (TAME-BC). This paper introduces the TAME-BC research setup that took place with Metro Manila, Philippines, case study. The approach integrates BC measurements with technological, socio-political, and health aspects to improve the scientific state of the art, policymaking, transport sector planning, and clinical studies related to air pollution health effects. The first pillar in the setup presents an (1) air quality assessment through aerosol measurements and instrumentation, complemented by a (2) description and assessment of the current policies, technologies, and practices of the transport sector that is responsible for pollution levels in the Philippines, as well as a (3) BC exposure and associated health impacts assessment. The fourth pillar is intercrossing, fostering (4) knowledge co-creation through stakeholder involvement across scales. We argue that this transdisciplinary approach is useful for research endeavors aiming for emission mitigation in rapidly urbanizing regions beyond Metro Manila.