Search Results

Now showing 1 - 5 of 5
  • Item
    What the Phage: a scalable workflow for the identification and analysis of phage sequences
    (Oxford : Oxford University Press, 2022) Marquet, Mike; Hölzer, Martin; Pletz, Mathias W; Viehweger, Adrian; Makarewicz, Oliwia; Ehricht, Ralf; Brandt, Christian
    Phages are among the most abundant and diverse biological entities on earth. Phage prediction from sequence data is a crucial first step to understanding their impact on the environment. A variety of bacteriophage prediction tools have been developed over the years. They differ in algorithmic approach, results, and ease of use. We, therefore, developed "What the Phage"(WtP), an easy-to-use and parallel multitool approach for phage prediction combined with an annotation and classification downstream strategy, thus supporting the user's decision-making process by summarizing the results of the different prediction tools in charts and tables. WtP is reproducible and scales to thousands of datasets through a workflow manager (Nextflow). WtP is freely available under a GPL-3.0 license (https://github.com/replikation/What_the_Phage).
  • Item
    ESBL colonization and acquisition in a hospital population: The molecular epidemiology and transmission of resistance genes
    (San Francisco : Public Library of Science, 2019) Hagel, Stefan; Makarewicz, Oliwia; Hartung, Anita; Weiss, Daniel; Stein, Claudia; Brandt, Christian; Schumacher, Ulrike; Ehricht, Ralf; Patchev, Vladimir; Pletz, Mathias W.
    A prospective cohort study (German Clinical Trial Registry, No. 00005273) was performed to determine pre-admission colonization rates, hospital acquisition risk factors, subsequent infection rates and colonization persistence including the respective molecular epidemiology and transmission rates of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (EPE). A total of 342 EPEs were isolated from rectal swabs of 1,334 patients on admission, at discharge and 6 months after hospitalization. Inclusion criteria were patients’ age > 18 years, expected length of stays > 48 hours, external referral. The EPEs were characterized by routine microbiological methods, a DNA microarray and ERIC-PCR. EPE colonization was found in 12.7 % of admitted patients, with the highest rate (23.8 %) in patients from nursing homes. During hospitalization, 8.1 % of the patients were de novo EPE colonized, and invasive procedures, antibiotic and antacid therapies were independent risk factors. Only 1/169 patients colonized on admission developed a hospital-acquired EPE infection. Escherichia coli was the predominant EPE (88.9 %), and 92.1% of the ESBL phenotypes could be related to CTX-M variants with CTX-M-1/15 group being most frequent (88.9%). A corresponding β-lactamase could not be identified in five isolates. Hospital-acquired EPE infections in patients colonized before or during hospitalization were rare. The diversity of the EPE strains was much higher than that of the underlying plasmids. In seven patients, transmission of the respective plasmid across different species could be observed indicating that the current strain-based surveillance approaches may underestimate the risk of inter-species transmission of resistance genes.A prospective cohort study (German Clinical Trial Registry, No. 00005273) was performed to determine pre-admission colonization rates, hospital acquisition risk factors, subsequent infection rates and colonization persistence including the respective molecular epidemiology and transmission rates of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (EPE). A total of 342 EPEs were isolated from rectal swabs of 1,334 patients on admission, at discharge and 6 months after hospitalization. Inclusion criteria were patients’ age > 18 years, expected length of stays > 48 hours, external referral. The EPEs were characterized by routine microbiological methods, a DNA microarray and ERIC-PCR. EPE colonization was found in 12.7 % of admitted patients, with the highest rate (23.8 %) in patients from nursing homes. During hospitalization, 8.1 % of the patients were de novo EPE colonized, and invasive procedures, antibiotic and antacid therapies were independent risk factors. Only 1/169 patients colonized on admission developed a hospital-acquired EPE infection. Escherichia coli was the predominant EPE (88.9 %), and 92.1% of the ESBL phenotypes could be related to CTX-M variants with CTX-M-1/15 group being most frequent (88.9%). A corresponding β-lactamase could not be identified in five isolates. Hospital-acquired EPE infections in patients colonized before or during hospitalization were rare. The diversity of the EPE strains was much higher than that of the underlying plasmids. In seven patients, transmission of the respective plasmid across different species could be observed indicating that the current strain-based surveillance approaches may underestimate the risk of inter-species transmission of resistance genes.
  • Item
    Biochemical Analysis of Leukocytes after In Vitro and In Vivo Activation with Bacterial and Fungal Pathogens Using Raman Spectroscopy
    (Basel : MDPI, 2021) Pistiki, Aikaterini; Ramoji, Anuradha; Ryabchykov, Oleg; Thomas-Rueddel, Daniel; Press, Adrian T.; Makarewicz, Oliwia; Giamarellos-Bourboulis, Evangelos J.; Bauer, Michael; Bocklitz, Thomas; Popp, Juergen; Neugebauer, Ute
    Biochemical information from activated leukocytes provide valuable diagnostic information. In this study, Raman spectroscopy was applied as a label-free analytical technique to characterize the activation pattern of leukocyte subpopulations in an in vitro infection model. Neutrophils, monocytes, and lymphocytes were isolated from healthy volunteers and stimulated with heat-inactivated clinical isolates of Candida albicans, Staphylococcus aureus, and Klebsiella pneumoniae. Binary classification models could identify the presence of infection for monocytes and lymphocytes, classify the type of infection as bacterial or fungal for neutrophils, monocytes, and lymphocytes and distinguish the cause of infection as Gram-negative or Gram-positive bacteria in the monocyte subpopulation. Changes in single-cell Raman spectra, upon leukocyte stimulation, can be explained with biochemical changes due to the leukocyte’s specific reaction to each type of pathogen. Raman spectra of leukocytes from the in vitro infection model were compared with spectra from leukocytes of patients with infection (DRKS-ID: DRKS00006265) with the same pathogen groups, and a good agreement was revealed. Our study elucidates the potential of Raman spectroscopy-based single-cell analysis for the differentiation of circulating leukocyte subtypes and identification of the infection by probing the molecular phenotype of those cells.
  • Item
    The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices
    (Berlin : Nature Pulishing, 2017) Geraci, Jennifer; Neubauer, Svetlana; Pöllath, Christine; Hansen, Uwe; Rizzo, Fabio; Krafft, Christoph; Westermann, Martin; Hussain, Muzaffar; Peters, Georg; Pletz, Mathias W.; Löffler, Bettina; Makarewicz, Oliwia; Tuchscherr, Lorena
    The extracellular matrix protein Emp of Staphylococcus aureus is a secreted adhesin that mediates interactions between the bacterial surface and extracellular host structures. However, its structure and role in staphylococcal pathogenesis remain unknown. Using multidisciplinary approaches, including circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy, transmission electron (TEM) and immunogold transmission electron microscopy, functional ELISA assays and in silico techniques, we characterized the Emp protein. We demonstrated that Emp and its truncated forms bind to suprastructures in human skin, cartilage or bone, among which binding activity seems to be higher for skin compounds. The binding domain is located in the C-terminal part of the protein. CD spectroscopy revealed high contents of β-sheets (39.58%) and natively disordered structures (41.2%), and TEM suggested a fibrous structure consisting of Emp polymers. The N-terminus seems to be essential for polymerization. Due to the uncommonly high histidine content, we suggest that Emp represents a novel type of histidine-rich protein sharing structural similarities to leucine-rich repeats proteins as predicted by the I-TASSER algorithm. These new findings suggest a role of Emp in infections of deeper tissue and open new possibilities for the development of novel therapeutic strategies.
  • Item
    Label-free multimodal imaging of infected Galleria mellonella larvae
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Quansah, Elsie; Ramoji, Anuradha; Thieme, Lara; Mirza, Kamran; Goering, Bianca; Makarewicz, Oliwia; Heutelbeck, Astrid; Meyer-Zedler, Tobias; Pletz, Mathias W.; Schmitt, Michael; Popp, Jürgen
    Non-linear imaging modalities have enabled us to obtain unique morpho-chemical insights into the tissue architecture of various biological model organisms in a label-free manner. However, these imaging techniques have so far not been applied to analyze the Galleria mellonella infection model. This study utilizes for the first time the strength of multimodal imaging techniques to explore infection-related changes in the Galleria mellonella larvae due to massive E. faecalis bacterial infection. Multimodal imaging techniques such as fluorescent lifetime imaging (FLIM), coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) were implemented in conjunction with histological HE images to analyze infection-associated tissue damage. The changes in the larvae in response to the infection, such as melanization, vacuolization, nodule formation, and hemocyte infiltration as a defense mechanism of insects against microbial pathogens, were visualized after Enterococcus faecalis was administered. Furthermore, multimodal imaging served for the analysis of implant-associated biofilm infections by visualizing biofilm adherence on medical stainless steel and ePTFE implants within the larvae. Our results suggest that infection-related changes as well as the integrity of the tissue of G. mellonella larvae can be studied with high morphological and chemical contrast in a label-free manner.