Search Results

Now showing 1 - 2 of 2
  • Item
    Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions: procedures and unit-to-unit variabilities
    (Katlenburg-Lindau : European Geosciences Union, 2021) Cuesta-Mosquera, Andrea; Močnik, Griša; Drinovec, Luka; Müller, Thomas; Pfeifer, Sascha; Minguillón, María Cruz; Briel, Björn; Buckley, Paul; Dudoitis, Vadimas; Fernández-García, Javier; Fernández-Amado, María; Ferreira De Brito, Joel; Riffault, Veronique; Flentje, Harald; Heffernan, Eimear; Kalivitis, Nikolaos; Kalogridis, Athina-Cerise; Keernik, Hannes; Marmureanu, Luminita; Luoma, Krista; Marinoni, Angela; Pikridas, Michael; Schauer, Gerhard; Serfozo, Norbert; Servomaa, Henri; Titos, Gloria; Yus-Díez, Jesús; Zioła, Natalia; Wiedensohler, Alfred
    Aerosolized black carbon is monitored worldwide to quantify its impact on air quality and climate. Given its importance, measurements of black carbon mass concentrations must be conducted with instruments operating in qualitychecked and ensured conditions to generate data which are reliable and comparable temporally and geographically. In this study, we report the results from the largest characterization and intercomparison of filter-based absorption photometers, the Aethalometer model AE33, belonging to several European monitoring networks. Under controlled laboratory conditions, a total of 23 instruments measured mass concentrations of black carbon from three wellcharacterized aerosol sources: synthetic soot, nigrosin particles, and ambient air from the urban background of Leipzig, Germany. The objective was to investigate the individual performance of the instruments and their comparability; we analyzed the response of the instruments to the different aerosol sources and the impact caused by the use of obsolete filter materials and the application of maintenance activities. Differences in the instrument-to-instrument variabilities from equivalent black carbon (eBC) concentrations reported at 880 nm were determined before maintenance activities (for soot measurements, average deviation from total least square regression was-2.0% and the range-16% to 7 %; for nigrosin measurements, average deviation was 0.4% and the range-15% to 17 %), and after they were carried out (for soot measurements, average deviation was-1.0% and the range-14% to 8 %; for nigrosin measurements, the average deviation was 0.5%and the range-12%to 15 %). The deviations are in most of the cases explained by the type of filter material employed by the instruments, the total particle load on the filter, and the flow calibration. The results of this intercomparison activity show that relatively small unit-to-unit variability of AE33-based particle light absorbing measurements is possible with wellmaintained instruments. It is crucial to follow the guidelines for maintenance activities and the use of the proper filter tape in the AE33 to ensure high quality and comparable black carbon (BC) measurements among international observational networks. © 2021 Author(s). This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): Uncertainties in particle sizing and number size distribution
    (München : European Geopyhsical Union, 2016) Pfeifer, Sascha; Müller, Thomas; Weinhold, Kay; Zikova, Nadezda; dos Santos, Sebastiao Martins; Marinoni, Angela; Bischof, Oliver F.; Kykal, Carsten; Ries, Ludwig; Meinhardt, Frank; Aalto, Pasi; Mihalopoulos, Nikolaos; Wiedensohler, Alfred
    Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 µm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 µm in aerodynamic diameter should only be used with caution. For particles larger than 3 µm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5–3 µm is needed.