Search Results

Now showing 1 - 5 of 5
  • Item
    Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: Implications for regional direct radiative forcing under clean and polluted conditions
    (München : European Geopyhsical Union, 2011) Stock, M.; Cheng, Y.F.; Birmili, W.; Massling, A.; Wehner, B.; Müller, T.; Leinert, S.; Kalivitis, N.; Mihalopoulos, N.; Wiedensohler, A.
    This work examines the effect of direct radiative forcing of aerosols in the eastern Mediterranean troposphere as a function of air mass composition, particle size distribution and hygroscopicity, and relative humidity (RH). During intensive field measurements on the island of Crete, Greece, the hygroscopic properties of atmospheric particles were determined using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Hygroscopicity Differential Mobility Analyzer-Aerodynamic Particle Sizer (H-DMA-APS). Similar to former studies, the H-TDMA identified three hygroscopic sub-fractions of particles in the sub-μm range: a more hygroscopic group, a less hygroscopic group and a nearly hydrophobic particle group. The average hygroscopic particle growth factors at 90 % RH were a significant function of particle mobility diameter (Dp): 1.42 (± 0.05) at 30 nm compared to 1.63 (± 0.07) at 250 nm. The H-DMA-APS identified up to three hygroscopic sub-fractions at mobility diameters of 1.0 and 1.2 μm. The data recorded between 12 August and 20 October 2005 were classified into four distinct synoptic-scale air mass types distinguishing between different regions of origin (western Mediterranean vs. the Aegean Sea) as well as the degree of continental pollution (marine vs. continentally influenced). The hygroscopic properties of particles with diameter Dp≥150 nm showed the most pronounced dependency on air mass origin, with growth factors in marine air masses exceeding those in continentally influenced air masses. Particle size distributions and hygroscopic growth factors were used to calculate aerosol light scattering coefficients at ambient RH using a Mie model. A main result was the pronounced enhancement of particle scattering over the eastern Mediterranean due to hygroscopic growth, both in the marine and continentally influenced air masses. When RH reached its summer daytime values around 70–80 %, up to 50–70 % of the calculated visibility reduction was due to the hygroscopic growth of the particles by water compared to the effect of the dry particles alone. The estimated aerosol direct radiative forcings for both, marine and continentally influenced air masses were negative indicating a net cooling of the atmosphere due to the aerosol. The radiative forcing ΔFr was nevertheless governed by the total aerosol concentration most of the time: ΔFr was typically more negative for continentally influenced aerosols (ca. −4 W m−2) compared to rather clean marine aerosols (ca. −1.5 W m−2). When RH occasionally reached 90 % in marine air masses, ΔFr even reached values down to −7 W m−2. Our results emphasize, on the basis of explicit particle hygroscopicity measurements, the relevance of ambient RH for the radiative forcing of regional atmospheres.
  • Item
    Towards closing the gap between hygroscopic growth and CCN activation for secondary organic aerosols-Part 3: Influence of the chemical composition on the hygroscopic properties and volatile fractions of aerosols
    (Göttingen : Copernicus, 2010) Poulain, L.; Wu, Z.; Petters, M.D.; Wex, H.; Hallbauer, E.; Wehner, B.; Massling, A.; Kreidenweis, S.M.; Stratmann, F.
    The influence of varying levels of water mixing ratio,r during the formation of secondary organic aerosol (SOA) from the ozonolysis of α-pinene on the SOA hygroscopicity and volatility was investigated. The reaction proceeded and aerosols were generated in a mixing chamber and the hygroscopic characteristics of the SOA were determined with the Leipzig Aerosol Cloud Interaction Simulator (LACIS) and a Cloud Condensation Nuclei counter (CCNc). In parallel, a High-Resolution Time-of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) located downstream of a thermodenuder (TD) sampling from the mixing chamber, to collect mass spectra of particles from the volatile and less-volatile fractions of the SOA. Results showed that both hygroscopic growth and the volatile fraction of the SOA increased with increases in r inside the mixing chamber during SOA generation. An effective density of 1.40 g cm-3 was observed for the generated SOA when the reaction proceeded with <1 g kg-1. Changes in the concentrations of the fragment CO2+ and the sum of CxH+y(short name CHO) and CxH+y (short name CH) fragments as measured by the HR-ToF-AMS were used to estimate changes in the oxidation level of the SOA with reaction conditions, using the ratios CO2 + to CH and CHO to CH. Under humid conditions, both ratios increased, corresponding to the presence of more oxygenated functional groups (i.e., multifunctional carboxylic acids). This result is consistent with the α-pinene ozonolysis mechanisms which suggest that water interacts with the stabilized Criegee intermediate. The volatility and the hygroscopicity results show that SOA generation via ozonolysis of α-pinene in the presence of water vapour (r <16.9 g kg-1) leads to the formation of more highly oxygenated compounds that are more hygroscopic and more volatile than compounds formed under dry conditions. © 2010 Author(s).
  • Item
    Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: A comparison of three experimental methods
    (München : European Geopyhsical Union, 2009) Meier, J.; Wehner, B.; Massling, A.; Birmili, W.; Nowak, A.; Gnauk, T.; Brüggemann, E.; Herrmann, H.; Min, H.; Wiedensohler, A.
    The hygroscopic properties of atmospheric aerosols are highly relevant for the quantification of radiative effects in the atmosphere, but also of interest for the assessment of particle health effects upon inhalation. This article reports measurements of aerosol particle hygroscopicity in the highly polluted urban atmosphere of Beijing, China in January 2005. The meteorological conditions corresponded to a relatively cold and dry atmosphere. Three different methods were used: 1) A combination of Humidifying Differential Mobility Particle Sizer (H-DMPS) and Twin Differential Mobility Particle Sizer (TDMPS) measurements, 2) A Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA), and 3) A simplistic solubility model fed by chemical particle composition determined from Micro Orifice Uniform Deposit Impactor (MOUDI) samples. From the H-DMPS and TDMPS particle number size distributions, a size-resolved descriptive hygroscopic growth factor (DHGF) was determined for the relative humidities (RH) 55%, 77% and 90%, and particle diameters between 30 and 400 nm. In Beijing, the highest DHGFs were observed for accumulation mode particles, 1.40 (±0.03) at 90% RH. DHGF decreased significantly with particle size, reaching 1.04 (±0.15) at 30 nm. H-TDMA data also suggest a decrease in growth factor towards the biggest particles investigated (350 nm), associated with an increasing fraction of nearly hydrophobic particles. The agreement between the H-DMPS/TDMPS and H-TDMA methods was satisfactory in the accumulation mode size range (100–400 nm). In the Aitken mode range (<100 nm), the H-DMPS/TDMPS method yielded growth factors lower by up to 0.1 at 90% RH. The application of the solubility model based on measured chemical composition clearly reproduced the size-dependent trend in hygroscopic particle growth observed by the other methods. In the case of aerosol dominated by inorganic ions, the composition-derived growth factors tended to agree (± 0.05) or underestimate (up to 0.1) the values measured by the other two methods. In the case of aerosol dominated by organics, the reverse was true, with an overestimation of up to 0.2. The results shed light on the experimental and methodological uncertainties that are still connected with the determination of hygroscopic growth factors.
  • Item
    Particle size distributions in the Eastern Mediterranean troposphere
    (München : European Geopyhsical Union, 2008) Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.
    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm–10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm−3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm−3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm−3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1–1.7 cm−3 s−1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm−3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.
  • Item
    New particle formation in the Front Range of the Colorado Rocky Mountains
    (München : European Geopyhsical Union, 2008) Boy, M.; Karl, T.; Turnipseed, A.; Mauldin, R.L.; Kosciuch, E.; Greenberg, J.; Massling, A.; Rathbone, J.; Smith, J.; Held, A.; Barsanti, K.; Wehner, B.; Bauer, S.; Wiedensohler, A.; Bonn, B.; Kulmala, M.; Guenther, A.
    New particle formation is of interest because of its influence on the properties of aerosol population, and due to the possible contribution of newly formed particles to cloud condensation nuclei. Currently no conclusive evidence exists as to the mechanism or mechanisms of nucleation and subsequent particle growth. However, nucleation rates exhibit a clear dependence on ambient sulphuric acid concentrations and particle growth is often attributed to the condensation of organic vapours. A detailed study of new particle formation in the Front Range of the Colorado Rocky Mountains is presented here. Gas and particle measurement data for 32 days was analyzed to identify event days, possible event days, and non-event days. A detailed analysis of nucleation and growth is provided for four days on which new particle formation was clearly observed. Evidence for the role of sesquiterpenes in new particle formation is presented.