Search Results

Now showing 1 - 6 of 6
  • Item
    Dynamics of serrated flow in a bulk metallic glass
    (New York : American Institute of Physics, 2011) Ren, J.L.; Chen, C.; Wang, G.; Mattern, N.; Eckert, J.
    Under compression loading, bulk metallic glasses (BMGs) irreversibly deform through shear banding manifested as a serrated flow behavior. By using a statistical analysis together with a complementary dynamical analysis of the stress-time curves during serrated flow, we characterize the distinct spatiotemporal dynamical regimes and find that the plastic dynamic behavior of a Cu50Zr45Ti5 BMG changes from chaotic to self-organized critical behavior with increasing strain rate. This plastic dynamics transition with the strain rate is interpreted in the frame of the competence between the neighboring elastic strain field forming and relaxation processes.
  • Item
    Crystallization of Fe82Si2B16 and Fe82Si4B14 metallic glasses upon isothermal and non-isothermal annealing
    (Les Ulis : EDP Sciences, 2011) Shpak, A.P.; Il’inskii, A.G.; Marunyak, A.V.; Slukhovskyy, O.I.; Lepeeva, Yu. V.; Dekhtyar, A.; Kaban, I.; Mattern, N.; Eckert, J.
    Crystallization of Fe82Si2B16 and Fe82Si4B14 metallic glasses upon heat treatment has been studied. The amorphous ribbons have been isothermally annealed at different temperatures (673, 693, 733 and 743 K) and for various times (from 15 min to 78 hours). Phase compositions and the sequence of their appearance in dependence on the annealing temperature and time have been established.
  • Item
    Wetting behaviour and reactivity between liquid Gd and ZrO2 substrate
    (Bor : Techn. Faculty, Univ. of Belgrade, 2017) Turalska, P.; Homa, M.; Bruzda, G.; Sobczak, N.; Kaban, I.; Mattern, N.; Eckert, J.
    The wetting behavior and reactivity between molten pure Gd and polycrystalline 3YSZ substrate (ZrO2 stabilized with 3 wt% of Y2O3)were experimentally determined by a sessile drop method using a classical contact heating coupled with drop pushing procedure. The test was performed under an inert flowing gas atmosphere (Ar) at two temperatures of 1362°C and 1412°C. Immediately after melting (Tm=1341°C), liquid Gd did not wet the substrate forming a contact angle of θ=141°. The non-wetting to wetting transition (θ < 90°) took place after about 110 seconds of interaction and was accompanied by a sudden decrease in the contact angle value to 67°. Further heating of the couple to 1412 °C did not affect wetting (θ=67°±1°). The solidified Gd/3YSZ couple was studied by means of optical microscopy and scanning electron microscopy coupled with X-ray energy dispersive spectroscopy. Structural investigations revealed that the wettability in the Gd/3YSZ system is of a reactive nature associated with the formation of a continuous layer of a wettable reaction product Gd2Zr2O7.
  • Item
    High-Temperature Interaction of Liquid Gd with Y2O3
    (New York, NY : Springer, 2019) Turalska, P.; Sobczak, N.; Bruzda, G.; Kaban, I.; Mattern, N.
    The sessile drop method combined with contact heating procedure was applied for the investigation of high-temperature interaction between liquid Gd and Y2O3 substrate. Real-time behavior of Gd sample in flowing inert gas (Ar) atmosphere upon heating to and at temperature of 1362 °C was recorded using high-speed high-resolution CCD camera. The results evidenced that molten Gd wets Y2O3 substrate (the contact angle θ < 90°) immediately after melting of metal sample observed at T = 1324 °C (Tm = 1312 °C). During the first 3 min of the sessile drop test, the contact angle dropped from θ = 52° to θ = 24° and then stabilized at the final value of θf * = 33°. The solidified Gd/Y2O3 couple was subjected to structural characterization using optical microscopy, scanning electron microscopy coupled with x-ray energy-dispersive spectroscopy. The results evidenced that the wettability in the Gd/Y2O3 system has a reactive nature and the leading mechanism of the interaction between liquid Gd and Y2O3 is the dissolution of the ceramic in the liquid metal responsible for the formation of a deep crater in the substrate under the drop. Therefore, the final contact angle θf*, estimated from the side-view drop image, should be considered as an apparent value, compared to the more reliable value of θf = 70° measured on the cross section of the solidified couple. © 2019, The Author(s).
  • Item
    Structural evolution and strength change of a metallic glass at different temperatures
    (London : Nature Publishing Group, 2016) Tong, X.; Wang, G.; Stachurski, Z.H.; Bednarčík, J.; Mattern, N.; Zhai, Q.J.; Eckert, J.
    The structural evolution of a Zr64.13Cu15.75Ni10.12Al10 metallic glass is investigated in-situ by high-energy synchrotron X-ray radiation upon heating up to crystallization. The structural rearrangements on the atomic scale during the heating process are analysed as a function of temperature, focusing on shift of the peaks of the structure factor in reciprocal space and the pair distribution function and radial distribution function in real space which are correlated with atomic rearrangements and progressing nanocrystallization. Thermal expansion and contraction of the coordination shells is measured and correlated with the bulk coefficient of thermal expansion. The characteristics of the microstructure and the yield strength of the metallic glass at high temperature are discussed aiming to elucidate the correlation between the atomic arrangement and the mechanical properties.
  • Item
    Correlation between atomic structure evolution and strength in a bulk metallic glass at cryogenic temperature
    (London : Nature Publishing Group, 2014) Tan, J.; Wang, G.; Liu, Z.Y.; Bednarčík, J.; Gao, Y.L.; Zhai, Q.J.; Mattern, N.; Eckert, J.
    A model Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) is selected to explore the structural evolution on the atomic scale with decreasing temperature down to cryogenic level using high energy X-ray synchrotron radiation. We discover a close correlation between the atomic structure evolution and the strength of the BMG and find out that the activation energy increment of the concordantly atomic shifting at lower temperature is the main factor influencing the strength. Our results might provide a fundamental understanding of the atomic-scale structure evolution and may bridge the gap between the atomic-scale physics and the macro-scale fracture strength for BMGs.