Search Results

Now showing 1 - 10 of 94
  • Item
    Spectrum and amplitude equations for scalar delay-differential equations with large delay
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Yanchuk, Serhiy; Lücken, Leonhard; Wolfrum, Matthias; Mielke, Alexander
    The subject of the paper are scalar delay-differential equations with large delay. Firstly, we describe the asymptotic properties of the spectrum of linear equations. Using these properties, we classify possible types of destabilization of steady states. In the limit of large delay, this classification is similar to the one for parabolic partial differential equations. We present a derivation and error estimates for amplitude equations, which describe universally the local behavior of scalar delay-differential equations close to the destabilization threshold.
  • Item
    Free energy, free entropy, and a gradient structure for thermoplasticity
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Mielke, Alexander
    In the modeling of solids the free energy, the energy, and the entropy play a central role. We show that the free entropy, which is defined as the negative of the free energy divided by the temperature, is similarly important. The derivatives of the free energy are suitable thermodynamical driving forces for reversible (i.e. Hamiltonian) parts of the dynamics, while for the dissipative parts the derivatives of the free entropy are the correct driving forces. This difference does not matter for isothermal cases nor for local materials, but it is relevant in the non-isothermal case if the densities also depend on gradients, as is the case in gradient thermoplasticity. Using the total entropy as a driving functional, we develop gradient structures for quasistatic thermoplasticity, which again features the role of the free entropy. The big advantage of the gradient structure is the possibility of deriving time-incremental minimization procedures, where the entropy-production potential minus the total entropy is minimized with respect to the internal variables and the temperature. We also highlight that the usage of an auxiliary temperature as an integrating factor in Yang/Stainier/Ortiz "A variational formulation of the coupled thermomechanical boundary-value problem for general dissipative solids" (J. Mech. Physics Solids, 54, 401-424, 2006) serves exactly the purpose to transform the reversible driving forces, obtained from the free energy, into the needed irreversible driving forces, which should have been derived from the free entropy. This reconfirms the fact that only the usage of the free entropy as driving functional for dissipative processes allows us to derive a proper variational formulation.
  • Item
    From discrete visco-elasticity to continuum rate-independent plasticity : rigorous results
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Mielke, Alexander; Truskinovsky, Lev
    We show that continuum models for ideal plasticity can be obtained as a rigorous mathematical limit starting from a discrete microscopic model describing a visco-elastic crystal lattice with quenched disorder. The constitutive structure changes as a result of two concurrent limiting procedures: the vanishing-viscosity limit and the discrete to continuum limit. In the course of these limits a non-convex elastic problem transforms into a convex elastic problem while the quadratic rate-dependent dissipation of visco-elastic solid transforms into a singular rate-independent dissipation of an ideally plastic solid. In order to emphasize ideas we employ in our proofs the simplest prototypical system describing transformational plasticity of shape-memory alloys. The approach, however, is sufficiently general and can be used for similar reductions in the cases of more general plasticity and damage models.
  • Item
    On an evolutionary model for complete damage based on energies and stresses
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Mielke, Alexander
    A recent model allows for complete damage, such that the deformation is not well-defined. The evolution can be described in terms of energy densities and stresses. We introduce the notion of weak energetic solution and show how the existence theory can be generalized to convex, but non-quadratic elastic energies.
  • Item
    Variational approaches and methods for dissipative material models with multiple scales
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Mielke, Alexander
    In a first part we consider evolutionary systems given as generalized gradient systems and discuss various variational principles that can be used to construct solutions for a given system or to derive the limit dynamics for multiscale problems. These multiscale limits are formulated in the theory of evolutionary Gamma-convergence. On the one hand we consider the a family of viscous gradient system with quadratic dissipation potentials and a wiggly energy landscape that converge to a rate-independent system. On the other hand we show how the concept of Balanced-Viscosity solution arise as in the vanishing-viscosity limit. As applications we discuss, first, the evolution of laminate microstructures in finite-strain elastoplasticity and, second, a two-phase model for shape-memory materials, where H-measures are used to construct the mutual recovery sequences needed in the existence theory.
  • Item
    Decay to equilibrium for energy-reaction-diffusion systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Haskovec, Jan; Hittmeir, Sabine; Markowich, Peter; Mielke, Alexander
    We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, at first in entropy and further in L1 using Cziszàr-Kullback-Pinsker type inequalities.
  • Item
    Non-equilibrium thermodynamical principles for chemical reactions with mass-action kinetics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Mielke, Alexander; Patterson, Robert I.A.; Peletier, Mark A.; Renger, D.R. Michiel
    We study stochastic interacting particle systems that model chemical reaction networks on the microscopic scale, converging to the macroscopic Reaction Rate Equation. One abstraction level higher, we also study the ensemble of such particle systems, converging to the corresponding Liouville transport equation. For both systems, we calculate the corresponding large deviations and show that under the condition of detailed balance, the large deviations enables us to derive a non-linear relation between thermodynamic fluxes and free energy driving force.
  • Item
    A complete-damage problem at small strains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Bouchitté, Guy; Mielke, Alexander; Roubíček, Tomáš
    The complete damage of a linearly-responding material that can thus completely disintegrate is addressed at small strains under time-varying Dirichlet boundary conditions as a rate-independent evolution problem in multidimensional situations. The stored energy involves the gradient of the damage variable. This variable as well as the stress and energies are shown to be well defined even under complete damage, in contrast to displacement and strain. Existence of an energetic solution is proved, in particular, by detailed investigating the $Gamma$-limit of the stored energy and its dependence on boundary conditions. Eventually, the theory is illustrated on a one-dimensional example.
  • Item
    Existence, numerical convergence, and evolutionary relaxation for a rate-independent phase-transformation model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Heinz, Sebastian; Mielke, Alexander
    We revisit the two-well model for phase transformation in a linearly elastic body introduced and studied in [MTL02]. This energetic rate-independent model is posed in terms of the elastic displacement and an internal variable that gives the phase portion of the second phase. We use a new approach based on mutual recovery sequences, which are adjusted to a suitable energy increment plus the associated dissipated energy and, thus, enable us to pass to the limit in the construction of energetic solutions. We give three distinct constructions of mutual recovery sequences which allow us (i) to generalize the existence result in [MTL02], (ii) to establish the convergence of suitable the evolutionary relaxation from the pure-state model to the relaxed mixture model. All these results rely on weak converge and involve the H-measure as an essential tool.
  • Item
    Calculation of ultrashort pulse propagation based on rational approximations for medium dispersion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Amiranashvili, Shalva; Bandelow, Uwe; Mielke, Alexander
    Ultrashort optical pulses contain only a few optical cycles and exhibit broad spectra. Their carrier frequency is therefore not well defined and their description in terms of the standard slowly varying envelope approximation becomes questionable. Existing modeling approaches can be divided in two classes, namely generalized envelope equations, that stem from the nonlinear Schrödinger equation, and non-envelope equations which treat the field directly. Based on fundamental physical rules we will present an approach that effectively interpolates between these classes and provides a suitable setting for accurate and highly efficient numerical treatment of pulse propagation along nonlinear and dispersive optical media.