Search Results

Now showing 1 - 10 of 23
  • Item
    Global existence analysis of energy-reaction-diffusion systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Fischer, Julian; Hopf, Katharina; Kniely, Michael; Mielke, Alexander
    We establish global-in-time existence results for thermodynamically consistent reaction-(cross-)diffusion systems coupled to an equation describing heat transfer. Our main interest is to model species-dependent diffusivities, while at the same time ensuring thermodynamic consistency. A key difficulty of the non-isothermal case lies in the intrinsic presence of cross-diffusion type phenomena like the Soret and the Dufour effect: due to the temperature/energy dependence of the thermodynamic equilibria, a nonvanishing temperature gradient may drive a concentration flux even in a situation with constant concentrations; likewise, a nonvanishing concentration gradient may drive a heat flux even in a case of spatially constant temperature. We use time discretisation and regularisation techniques and derive a priori estimates based on a suitable entropy and the associated entropy production. Renormalised solutions are used in cases where non-integrable diffusion fluxes or reaction terms appear.
  • Item
    Thermoviscoelasticity in Kelvin--Voigt rheology at large strains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Mielke, Alexander; Roubíček, Tomáš
    The frame-indifferent thermodynamically-consistent model of thermoviscoelasticity at large strain is formulated in the reference configuration with using the concept of the second-grade nonsimple materials. We focus on physically correct viscous stresses that are frame indifferent under time-dependent rotations. Also elastic stresses are frame indifferent under rotations and respect positivity of the determinant of the deformation gradient. The heat transfer is governed by the Fourier law in the actual deformed configuration, which leads to a nontrivial description when pulled back into the reference configuration. Existence of weak solutions in the quasistatic setting, i.e. inertial forces are ignored, is shown by time discretization.
  • Item
    Coarse-graining via EDP-convergence for linear fast-slow reaction systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Mielke, Alexander; Stephan, Artur
    We consider linear reaction systems with slow and fast reactions, which can be interpreted as master equations or Kolmogorov forward equations for Markov processes on a finite state space. We investigate their limit behavior if the fast reaction rates tend to infinity, which leads to a coarse-grained model where the fast reactions create microscopically equilibrated clusters, while the exchange mass between the clusters occurs on the slow time scale. Assuming detailed balance the reaction system can be written as a gradient flow with respect to the relative entropy. Focusing on the physically relevant cosh-type gradient structure we show how an effective limit gradient structure can be rigorously derived and that the coarse-grained equation again has a cosh-type gradient structure. We obtain the strongest version of convergence in the sense of the Energy-Dissipation Principle (EDP), namely EDP-convergence with tilting.
  • Item
    EDP-convergence for nonlinear fast-slow reaction systems with detailed balance
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Mielke, Alexander; Peletier, Mark A.; Stephan, Artur
    We consider nonlinear reaction systems satisfying mass-action kinetics with slow and fast reactions. It is known that the fast-reaction-rate limit can be described by an ODE with Lagrange multipliers and a set of nonlinear constraints that ask the fast reactions to be in equilibrium. Our aim is to study the limiting gradient structure which is available if the reaction system satisfies the detailed-balance condition. The gradient structure on the set of concentration vectors is given in terms of the relative Boltzmann entropy and a cosh-type dissipation potential. We show that a limiting or effective gradient structure can be rigorously derived via EDP convergence, i.e. convergence in the sense of the Energy-Dissipation Principle for gradient flows. In general, the effective entropy will no longer be of Boltzmann type and the reactions will no longer satisfy mass-action kinetics.
  • Item
    Mathematical modeling of semiconductors: From quantum mechanics to devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Kantner, Markus; Mielke, Alexander; Mittnenzweig, Markus; Rotundo, Nella
    We discuss recent progress in the mathematical modeling of semiconductor devices. The central result of this paper is a combined quantum-classical model that self-consistently couples van Roosbroeck's drift-diffusion system for classical charge transport with a Lindblad-type quantum master equation. The coupling is shown to obey fundamental principles of non-equilibrium thermodynamics. The appealing thermodynamic properties are shown to arise from the underlying mathematical structure of a damped Hamitlonian system, which is an isothermal version of so-called GENERIC systems. The evolution is governed by a Hamiltonian part and a gradient part involving a Poisson operator and an Onsager operator as geoemtric structures, respectively. Both parts are driven by the conjugate forces given in terms of the derivatives of a suitable free energy.
  • Item
    On the Darwin--Howie--Whelan equations for the scattering of fast electrons described by the Schrödinger equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Koprucki, Thomas; Maltsi, Anieza; Mielke, Alexander
    The Darwin-Howie-Whelan equations are commonly used to describe and simulate the scattering of fast electrons in transmission electron microscopy. They are a system of infinitely many envelope functions, derived from the Schrödinger equation. However, for the simulation of images only a finite set of envelope functions is used, leading to a system of ordinary differential equations in thickness direction of the specimen. We study the mathematical structure of this system and provide error estimates to evaluate the accuracy of special approximations, like the two-beam and the systematic-row approximation.
  • Item
    Traveling fronts in a reaction-diffusion equation with a memory term
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Mielke, Alexander; Reichelt, Sina
    Based on a recent work on traveling waves in spatially nonlocal reaction-diffusion equations, we investigate the existence of traveling fronts in reaction-diffusion equations with a memory term. We will explain how such memory terms can arise from reduction of reaction-diffusion systems if the diffusion constants of the other species can be neglected. In particular, we show that two-scale homogenization of spatially periodic systems can induce spatially homogeneous systems with temporal memory. The existence of fronts is proved using comparison principles as well as a reformulation trick involving an auxiliary speed that allows us to transform memory terms into spatially nonlocal terms. Deriving explicit bounds and monotonicity properties of the wave speed of the arising traveling front, we are able to establish the existence of true traveling fronts for the original problem with memory. Our results are supplemented by numerical simulations.
  • Item
    Relating a rate-independent system and a gradient system for the case of one-homogeneous potentials
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Mielke, Alexander
    We consider a non-negative and one-homogeneous energy functional $mathcal J$ on a Hilbert space. The paper provides an exact relation between the solutions of the associated gradient-flow equations and the energetic solutions generated via the rate-inpendent system given in terms of the time-dependent functional $mathcal E(t,u)=t mathcal J(u)$ and the norm as a dissipation distance. The relation between the two flows is given via a solution-dependent reparametrization of time that can be guessed from the homogeneities of energy and dissipations in the two equations. We provide several examples including the total-variation flow and show that equivalence of the two systems through a solution dependent reparametrization of the time. Making the relation mathematically rigorous includes a careful analysis of the jumps in energetic solutions which correspond to constant-speed intervals for the solutins of the gradient-flow equation. As a major result we obtain a non-trivial existence and uniqueness result for the energetic rate-independent system.
  • Item
    Exploring families of energy-dissipation landscapes via tilting -- Three types of EDP convergence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Mielke, Alexander; Montefusco, Alberto; Peletier, Mark A.
    This paper revolves around a subtle distinction between two concepts: passing to the limit in a family of gradient systems, on one hand, and deriving effective kinetic relations on the other. The two concepts are strongly related, and in many examples they even appear to be the same. Our main contributions are to show that they are different, to show that well-known techniques developed for the former may give incorrect results for the latter, and to introduce new tools to remedy this. The approach is based on the Energy-Dissipation Principle that provides a variational formulation to gradient-flow equations that allows one to apply techniques from Γ-convergence of functional on states and functionals on trajectories.
  • Item
    Balanced-Viscosity solutions to infinite-dimensional multi-rate systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Mielke, Alexander; Rossi, Riccarda
    We consider generalized gradient systems with rate-independent and rate-dependent dissipation potentials. We provide a general framework for performing a vanishing-viscosity limit leading to the notion of parametrized and true Balanced-Viscosity solutions that include a precise description of the jump behavior developing in this limit. Distinguishing an elastic variable $u$ having a viscous damping with relaxation time $eps^alpha$ and an internal variable $z$ with relaxation time $eps$ we obtain different limits for the three cases $alpha in (0,1)$, $alpha=1$ and $alpha>1$. An application to a delamination problem shows that the theory is general enough to treat nontrivial models in continuum mechanics.