Search Results

Now showing 1 - 4 of 4
  • Item
    A rigorous derivation and energetics of a wave equation with fractional damping
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Mielke, Alexander; Netz, Roland R.; Zendehroud, Sina
    We consider a linear system that consists of a linear wave equation on a horizontal hypersurface and a parabolic equation in the half space below. The model describes longitudinal elastic waves in organic monolayers at the water-air interface, which is an experimental setup that is relevant for understanding wave propagation in biological membranes. We study the scaling regime where the relevant horizontal length scale is much larger than the vertical length scale and provide a rigorous limit leading to a fractionally-damped wave equation for the membrane. We provide the associated existence results via linear semigroup theory and show convergence of the solutions in the scaling limit. Moreover, based on the energy-dissipation structure for the full model, we derive a natural energy and a natural dissipation function for the fractionally-damped wave equation with a time derivative of order 3/2.
  • Item
    Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe
    Balanced Viscosity solutions to rate-independent systems arise as limits of regularized rate-independent flows by adding a superlinear vanishing-viscosity dissipation. We address the main issue of proving the existence of such limits for infinite-dimensional systems and of characterizing them by a couple of variational properties that combine a local stability condition and a balanced energy-dissipation identity. A careful description of the jump behavior of the solutions, of their differentiability properties, and of their equivalent representation by time rescaling is also presented. Our techniques rely on a suitable chain-rule inequality for functions of bounded variation in Banach spaces, on refined lower semicontinuity-compactness arguments, and on new BV-estimates that are of independent interest.
  • Item
    A gradient system with a wiggly energy and relaxed EDP-convergence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Dondl, Patrick; Frenzel, Thomas; Mielke, Alexander
    If gradient systems depend on a microstructure, we want to derive a macroscopic gradient structure describing the effective behavior of the microscopic system. We introduce a notion of evolutionary Gamma-convergence that relates the microscopic energy and the microscopic dissipation potential with their macroscopic limits via Gammaconvergence. We call this notion relaxed EDP-convergence since the special structure of the dissipation functional may not be preserved under Gamma-convergence. However, by investigating the kinetic relation we derive the macroscopic dissipation potential.
  • Item
    Coarse-graining via EDP-convergence for linear fast-slow reaction systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Mielke, Alexander; Stephan, Artur
    We consider linear reaction systems with slow and fast reactions, which can be interpreted as master equations or Kolmogorov forward equations for Markov processes on a finite state space. We investigate their limit behavior if the fast reaction rates tend to infinity, which leads to a coarse-grained model where the fast reactions create microscopically equilibrated clusters, while the exchange mass between the clusters occurs on the slow time scale. Assuming detailed balance the reaction system can be written as a gradient flow with respect to the relative entropy. Focusing on the physically relevant cosh-type gradient structure we show how an effective limit gradient structure can be rigorously derived and that the coarse-grained equation again has a cosh-type gradient structure. We obtain the strongest version of convergence in the sense of the Energy-Dissipation Principle (EDP), namely EDP-convergence with tilting.