Search Results

Now showing 1 - 10 of 19
  • Item
    Freestanding MXene‐based macroforms for electrochemical energy storage applications
    (Hoboken, NJ : Wiley, 2023) Lu, Qiongqiong; Liu, Congcong; Zhao, Yirong; Pan, Wengao; Xie, Kun; Yue, Pengfei; Zhang, Guoshang; Omar, Ahmad; Liu, Lixiang; Yu, Minghao; Mikhailova, Daria
    Freestanding MXene-based macroforms have gained significant attention as versatile components in electrochemical energy storage applications owing to their interconnected conductive network, strong mechanical strength, and customizable surface chemistries derived from MXene nanosheets. This comprehensive review article encompasses key aspects related to the synthesis of MXene nanosheets, strategies for structure design and surface medication, surface modification, and the diverse fabrication methods employed to create freestanding MXene-based macroform architectures. The review also delves into the recent advancements in utilizing freestanding MXene macroforms for electrochemical energy storage applications, offering a detailed discussion on the significant progress achieved thus far. Notably, the correlation between the macroform's structural attributes and its performance characteristics is thoroughly explored, shedding light on the critical factors influencing efficiency and durability. Despite the remarkable development, the review also highlights the existing challenges and presents future perspectives for freestanding MXene-based macroforms in the realms of high-performance energy storage devices. By addressing these challenges and leveraging emerging opportunities, the potential of freestanding MXene-based macroforms can be harnessed to enable groundbreaking advancements in the field of energy storage.
  • Item
    Directly Anodized Sulfur-Doped TiO2 Nanotubes as Improved Anodes for Li-ion Batteries
    (Basel : MDPI, 2020) Sabaghi, Davood; Madian, Mahmoud; Omar, Ahmad; Oswald, Steffen; Uhlemann, Margitta; Maghrebi, Morteza; Baniadam, Majid; Mikhailova, Daria
    TiO2 represents one of the promising anode materials for lithium ion batteries due to its high thermal and chemical stability, relatively high theoretical specific capacity and low cost. However, the electrochemical performance, particularly for mesoporous TiO2, is limited and must be further developed. Elemental doping is a viable route to enhance rate capability and discharge capacity of TiO2 anodes in Li-ion batteries. Usually, elemental doping requires elevated temperatures, which represents a challenge, particularly for sulfur as a dopant. In this work, S-doped TiO2 nanotubes were successfully synthesized in situ during the electrochemical anodization of a titanium substrate at room temperature. The electrochemical anodization bath represented an ethylene glycol-based solution containing NH4F along with Na2S2O5 as the sulfur source. The S-doped TiO2 anodes demonstrated a higher areal discharge capacity of 95 µAh·cm−2 at a current rate of 100 µA·cm−2 after 100 cycles, as compared to the pure TiO2 nanotubes (60 µAh·cm−2). S-TiO2 also exhibited a significantly improved rate capability up to 2500 µA·cm−2 as compared to undoped TiO2. The improved electrochemical performance, as compared to pure TiO2 nanotubes, is attributed to a lower impedance in S-doped TiO2 nanotubes (STNTs). Thus, the direct S-doping during the anodization process is a promising and cost-effective route towards improved TiO2 anodes for Li-ion batteries.
  • Item
    The Role of Al2O3 ALD Coating on Sn-Based Intermetallic Anodes for Rate Capability and Long-Term Cycling in Lithium-Ion Batteries
    (Weinheim : Wiley-VCH, 2022) Soltani, Niloofar; Abbas, Syed Muhammad; Hantusch, Martin; Lehmann, Sebastian; Nielsch, Kornelius; Bahrami, Amin; Mikhailova, Daria
    The electrochemical performances of CoSn2 and Ni3Sn4 as potential anode materials in lithium-ion batteries (LIBs) are investigated using varying thicknesses of an alumina layer deposited by the atomic layer deposition (ALD) technique. Rate capability results showed that at high current densities, Al2O3-coated CoSn2 and Ni3Sn4 electrodes after 10-ALD cycles outperformed uncoated materials. The charge capacities of coated CoSn2 and Ni3Sn4 electrodes are 571 and 134 mAh g−1, respectively, at a high current density of 5 A g−1, while the capacities of uncoated electrodes are 363 and 11 mAh g−1. When the current density is reduced to 1 A g−1, however, the cycling performances of Al2O3-coated CoSn2 and Ni3Sn4 electrodes fade faster after almost 40 cycles than uncoated electrodes. The explanation is found in the composition of the solid-electrolyte interface (SEI), which strongly depends on the current rate. Thus, X-ray photoelectron spectroscopy analysis of SEI layers on coated samples cycles at a low current density of 0.1 Ag−1, revealed organic carbonates as major products, which probably have a low ionic conductivity. In contrast, the SEI of coated materials cycled at 5 Ag−1 consists mostly of mixed inorganic/organic fluorine-rich Al-F and C-F species facilitating a higher ionic transport, which improves electrochemical performance.
  • Item
    High-Entropy Metal-Organic Frameworks for Highly Reversible Sodium Storage
    (Weinheim : Wiley-VCH, 2021) Ma, Yanjiao; Ma, Yuan; Dreyer, Sören Lukas; Wang, Qingsong; Wang, Kai; Goonetilleke, Damian; Omar, Ahmad; Mikhailova, Daria; Hahn, Horst; Breitung, Ben; Brezesinski, Torsten
    Prussian blue analogues (PBAs) are reported to be efficient sodium storage materials because of the unique advantages of their metal-organic framework structure. However, the issues of low specific capacity and poor reversibility, caused by phase transitions during charge/discharge cycling, have thus far limited the applicability of these materials. Herein, a new approach is presented to substantially improve the electrochemical properties of PBAs by introducing high entropy into the crystal structure. To achieve this, five different metal species are introduced, sharing the same nitrogen-coordinated site, thereby increasing the configurational entropy of the system beyond 1.5R. By careful selection of the elements, high-entropy PBA (HE-PBA) presents a quasi-zero-strain reaction mechanism, resulting in increased cycling stability and rate capability. The key to such improvement lies in the high entropy and associated effects as well as the presence of several active redox centers. The gassing behavior of PBAs is also reported. Evolution of dimeric cyanogen due to oxidation of the cyanide ligands is detected, which can be attributed to the structural degradation of HE-PBA during battery operation. By optimizing the electrochemical window, a Coulombic efficiency of nearly 100% is retained after cycling for more than 3000 cycles.
  • Item
    Structural Aspects of P2-Type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) Stabilization by Lithium Defects as a Cathode Material for Sodium-Ion Batteries
    (Weinheim : Wiley-VCH, 2021) Yang, Liangtao; Kuo, Liang-Yin; López del Amo, Juan Miguel; Nayak, Prasant Kumar; Mazzio, Katherine A.; Maletti, Sebastian; Mikhailova, Daria; Giebeler, Lars; Kaghazchi, Payam; Rojo, Teófilo; Adelhelm, Philipp
    A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Flux Growth and Characterization of Bulk InVO4 Crystals
    (Basel : MDPI, 2023) Voloshyna, Olesia; Gorbunov, Mikhail V.; Mikhailova, Daria; Maljuk, Andrey; Seiro, Silvia; Büchner, Bernd
    The flux growth of InVO4 bulk single crystals has been explored for the first time. The reported eutectic composition at a ratio of V2O5:InVO4 = 1:1 could not be used as a self-flux since no sign of melting was observed up to 1100 °C. Crystals of InVO4 of typical size 0.5 × 1 × 7 mm3 were obtained using copper pyrovanadate (Cu2V2O7) as a flux, using Pt crucibles. X-ray powder diffraction confirmed the orthorhombic Cmcm structure. Rests of the flux material were observed on the sample surface, with occasional traces of Pt indicating some level of reaction with the crucible. X-ray absorption spectroscopy showed that oxidation states of indium and vanadium ions are +3 and +5, respectively. The size and high quality of the obtained InVO4 crystals makes them excellent candidates for further study of their physical properties.
  • Item
    Preparation and Application of ZIF-8 Thin Layers
    (Basel : MDPI, 2021) Schernikau, Martin; Sablowski, Jakob; Gonzalez Martinez, Ignacio Guillermo; Unz, Simon; Kaskel, Stefan; Mikhailova, Daria
    Herein we compare various preparation methods for thin ZIF-8 layers on a Cu substrate for application as a host material for omniphobic lubricant-infused surfaces. Such omniphobic surfaces can be used in thermal engineering applications, for example to achieve dropwise condensation or anti-fouling and anti-icing surface properties. For these applications, a thin, conformal, homogeneous, mechanically and chemically stable coating is essential. In this study, thin ZIF-8 layers were deposited on a Cu substrate by different routes, such as (i) electrochemical anodic deposition on a Zn-covered Cu substrate, (ii) doctor blade technique for preparation of a composite layer containing PVDF binder and ZIF-8, as well as (iii) doctor blade technique for preparation of a two-layer composite on the Cu substrate containing a PVDF-film and a ZIF-8 layer. The morphology and topography of the coatings were compared by using profilometry, XRD, SEM and TEM techniques. After infusion with a perfluorinated oil, the wettability of the surfaces was assessed by contact angle measurements, and advantages of each preparation method were discussed.
  • Item
    Studies of Li2Fe0.9M0.1SO Antiperovskite Materials for Lithium–Ion Batteries: The Role of Partial Fe2+ to M2+ Substitution
    (Lausanne : Frontiers Media, 2021) Gorbunov, Mikhail V.; Carocci, Salvatore; Gonzalez Martinez, Ignacio G.; Baran, Volodymyr; Mikhailova, Daria
    Cubic Li2Fe0.9M0.1SO antiperovskites with M–Co2+, or Mn2+ were successfully synthesized by a solid-state technique, and studied as cathode materials in Li-batteries. The influence of the Co, and Mn cation substitution of Fe in Li2FeSO on the resulting electrochemical performance was evaluated by galvanostatic cycling, while the reaction mechanism was explored by applying operando X-ray absorption and X-ray diffraction techniques using synchrotron radiation facilities. Even 10% Fe-substitution by these metals completely changes the structural behavior of the material upon Li-removal and insertion, in comparison to Li2FeSO. The Co-substitution significantly improves cyclability of the material at high current densities in comparison to the non-substituted material, reaching a specific capacity of 250 mAh/g at 1C current density. In contrast, the Mn-substitution leads to deterioration of the electrochemical performance because of the impeded kinetics, which may be caused by the appearance of a second isostructural phase due to formation of Jahn-Teller Mn3+ cations upon delithiation.
  • Item
    Polypyrrole Wrapped V2O5 Nanowires Composite for Advanced Aqueous Zinc-Ion Batteries
    (Lausanne : Frontiers Media, 2020) Qin, Xinghua; Wang, Xinyu; Sun, Juncai; Lu, Qiongqiong; Omar, Ahmad; Mikhailova, Daria
    Aqueous zinc-ion batteries (ZIBs) have obtained increasing attention owing to the high safety, material abundance, and environmental benignity. However, the development of cathode materials with high capacity and stable cyclability is still a challenge. Herein, the polypyrrole (PPy)-wrapped V2O5 nanowire (V2O5/PPy) composite was synthesized by a surface-initiated polymerization strategy, ascribing to the redox reaction between V2O5 and pyrrole. The introduction of PPy on the surface of V2O5 nanowires not only enhanced the electronic conductivity of the active materials but also reduced the V2O5 dissolution. As a result, the V2O5/PPy composite cathode exhibits a high specific capacity of 466 mAh g–1 at 0.1 A g–1 and a superior cycling stability with 95% capacity retention after 1000 cycles at a high current density of 5 A g–1. The superior electrochemical performance is ascribed to the large ratio of capacitive contribution (92% at 1 mV s–1) and a fast Zn2+ diffusion rate. This work presents a simple method for fabricating V2O5/PPy composite toward advanced ZIBs.
  • Item
    Comparative Study of Onion-like Carbons Prepared from Different Synthesis Routes towards Li-Ion Capacitor Application
    (Basel : MDPI, 2022) Permana, Antonius Dimas Chandra; Ding, Ling; Gonzalez-Martinez, Ignacio Guillermo; Hantusch, Martin; Nielsch, Kornelius; Mikhailova, Daria; Omar, Ahmad
    Li-ion capacitors (LIC) have emerged as a promising hybrid energy storage system in response to increasing energy demands. However, to achieve excellent LIC performance at high rates, along with cycling stability, an alternative anode to graphite is needed. Porous high-surface-area carbons, such as onion-like carbons (OLCs), have been recently found to hold high potential as high-rate-capable LIC anodes. However, a systematic understanding of their synthesis route and morphology is lacking. In this study, OLCs prepared from self-made metal organic frameworks (MOFs) Fe-BTC and Fe-MIL100 by a simple pyrolysis method were compared to OLCs obtained via high-temperature annealing of nanodiamonds. The LICs with OLCs produced from Fe-BTC achieved a maximum energy density of 243 Wh kg−1 and a power density of 20,149 W kg−1. Furthermore, excellent capacitance retention of 78% after 10,000 cycles was demonstrated. LICs with MOF-derived OLCs surpassed the energy and power density of LICs with nanodiamond-derived OLCs. We determined the impact of the MOF precursor structure and morphology on the resulting OLC properties, as well as on the electrochemical performance. Thus, MOF-derived OLCs offer significant potential toward high-performance anode material for LICs, enabling control over structure and morphology, as well as easy scalability for industrial implementation.