Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Correlation of crystal violet biofilm test results of Staphylococcus aureus clinical isolates with Raman spectroscopic read-out

2021, Ebert, Christina, Tuchscherr, Lorena, Unger, Nancy, Pöllath, Christine, Gladigau, Frederike, Popp, Jürgen, Löffler, Bettina, Neugebauer, Ute

Biofilm-related infections occur quite frequently in hospital settings and require rapid diagnostic identification as they are recalcitrant to antibiotic therapy and make special treatment necessary. One of the standard microbiological in vitro tests is the crystal violet test. It indirectly determines the amount of biofilm by measuring the optical density (OD) of the crystal violet-stained biofilm matrix and cells. However, this test is quite time-consuming, as it requires bacterial cultivation up to several days. In this study, we correlate fast Raman spectroscopic read-out of clinical Staphylococcus aureus isolates from 47 patients with different disease background with their biofilm-forming characteristics. Included were low (OD < 10), medium (OD ≥ 10 and ≤20), and high (OD > 20) biofilm performers as determined by the crystal violet test. Raman spectroscopic analysis of the bacteria revealed most spectral differences between high and low biofilm performers in the fingerprint region between 750 and 1150 cm−1. Using partial least square regression (PLSR) analysis on the Raman spectra involving the three categories of biofilm formation, it was possible to obtain a slight linear correlation of the Raman spectra with the biofilm OD values. The PLSR loading coefficient highlighted spectral differences between high and low biofilm performers for Raman bands that represent nucleic acids, carbohydrates, and proteins. Our results point to a possible application of Raman spectroscopy as a fast prediction tool for biofilm formation of bacterial strains directly after isolation from the infected patient. This could help clinicians make timely and adapted therapeutic decision in future.

Loading...
Thumbnail Image
Item

Vibrational Spectroscopic Investigation of Blood Plasma and Serum by Drop Coating Deposition for Clinical Application

2021, Huang, Jing, Ali, Nairveen, Quansah, Elsie, Guo, Shuxia, Noutsias, Michel, Meyer-Zedler, Tobias, Bocklitz, Thomas, Popp, Jürgen, Neugebauer, Ute, Ramoji, Anuradha

In recent decades, vibrational spectroscopic methods such as Raman and FT-IR spectroscopy are widely applied to investigate plasma and serum samples. These methods are combined with drop coating deposition techniques to pre-concentrate the biomolecules in the dried droplet to improve the detected vibrational signal. However, most often encountered challenge is the inhomogeneous redistribution of biomolecules due to the coffee-ring effect. In this study, the variation in biomolecule distribution within the dried-sample droplet has been investigated using Raman and FT-IR spectroscopy and fluorescence lifetime imaging method. The plasma-sample from healthy donors were investigated to show the spectral differences between the inner and outer-ring region of the dried-sample droplet. Further, the preferred location of deposition of the most abundant protein albumin in the blood during the drying process of the plasma has been illustrated by using deuterated albumin. Subsequently, two patients with different cardiac-related diseases were investigated exemplarily to illustrate the variation in the pattern of plasma and serum biomolecule distribution during the drying process and its impact on patient-stratification. The study shows that a uniform sampling position of the droplet, both at the inner and the outer ring, is necessary for thorough clinical characterization of the patient’s plasma and serum sample using vibrational spectroscopy.

Loading...
Thumbnail Image
Item

Predictive Modeling of Antibiotic Susceptibility in E. Coli Strains Using the U-Net Network and One-Class Classification

2020, Ali, Nairveen, Kirchhoff, Johanna, Onoja, Patrick Igoche, Tannert, Astrid, Neugebauer, Ute, Popp, Jürgen, Bocklitz, Thomas

The antibiotic resistance of bacterial pathogens has become one of the most serious global health issues due to misusing and overusing of antibiotics. Recently, different technologies were developed to determine bacteria susceptibility towards antibiotics; however, each of these technologies has its advantages and limitations in clinical applications. In this contribution, we aim to assess and automate the detection of bacterial susceptibilities towards three antibiotics; i.e. ciprofloxacin, cefotaxime and piperacillin using a combination of image processing and machine learning algorithms. Therein, microscopic images were collected from different E. coli strains, then the convolutional neural network U-Net was implemented to segment the areas showing bacteria. Subsequently, the encoder part of the trained U-Net was utilized as a feature extractor, and the U-Net bottleneck features were utilized to predict the antibiotic susceptibility of E. coli strains using a one-class support vector machine (OCSVM). This one-class model was always trained on images of untreated controls of each bacterial strain while the image labels of treated bacteria were predicted as control or non-control images. If an image of treated bacteria is predicted as control, we assume that these bacteria resist this antibiotic. In contrast, the sensitive bacteria show different morphology of the control bacteria; therefore, images collected from these treated bacteria are expected to be classified as non-control. Our results showed 83% area under the receiver operating characteristic (ROC) curve when OCSVM models were built using the U-Net bottleneck features of control bacteria images only. Additionally, the mean sensitivities of these one-class models are 91.67% and 86.61% for cefotaxime and piperacillin; respectively. The mean sensitivity for the prediction of ciprofloxacin is only 59.72% as the bacteria morphology was not fully detected by the proposed method.