Search Results

Now showing 1 - 9 of 9
  • Item
    Homogeneous and heterogeneous ice nucleation at LACIS: Operating principle and theoretical studies
    (München : European Geopyhsical Union, 2011) Hartmann, S.; Niedermeier, D.; Voigtländer, J.; Clauss, T.; Shaw, R.A.; Wex, H.; Kiselev, A.; Stratmann, F.
    At the Leipzig Aerosol Cloud Interaction Simulator (LACIS) experiments investigating homogeneous and heterogeneous nucleation of ice (particularly immersion freezing in the latter case) have been carried out. Here both the physical LACIS setup and the numerical model developed to design experiments at LACIS and interpret their results are presented in detail. Combining results from the numerical model with experimental data, it was found that for the experimental parameter space considered, classical homogeneous ice nucleation theory is able to predict the freezing behavior of highly diluted ammonium sulfate solution droplets, while classical heterogeneous ice nucleation theory, together with the assumption of a constant contact angle, fails to predict the immersion freezing behavior of surrogate mineral dust particles (Arizona Test Dust, ATD). The main reason for this failure is the compared to experimental data apparently overly strong temperature dependence of the nucleation rate coefficient. Assuming, in the numerical model, Classical Nucleation Theory (CNT) for homogeneous ice nucleation and a CNT-based parameterization for the nucleation rate coefficient in the immersion freezing mode, recently published by our group, it was found that even for a relatively effective ice nucleating agent such as pure ATD, there is a temperature range where homogeneous ice nucleation is dominant. The main explanation is the apparently different temperature dependencies of the two freezing mechanisms. Finally, reviewing the assumptions made during the derivation of the CNT-based parameterization for immersion freezing, it was found that the assumption of constant temperature during ice nucleation and the chosen ice nucleation time were justified, underlining the applicability of the method to determine the fitting coefficients in the parameterization equation.
  • Item
    Surface modification of mineral dust particles by sulphuric acid processing: Implications for ice nucleation abilities
    (München : European Geopyhsical Union, 2011) Reitz, P.; Spindler, C.; Mentel, T.F.; Poulain, L.; Wex, H.; Mildenberger, K.; Niedermeier, D.; Hartmann, S.; Clauss, T.; Stratmann, F.; Sullivan, R.C.; DeMott, P.J.; Petters, M.D.; Sierau, B.; Schneider, J.
    The ability of coated mineral dust particles to act as ice nuclei (IN) was investigated at LACIS (Leipzig Aerosol Cloud Interaction Simulator) during the FROST1- and FROST2-campaigns (Freezing of dust). Sulphuric acid was condensed on the particles which afterwards were optionally humidified, treated with ammonia vapour and/or heat. By means of aerosol mass spectrometry we found evidence that processing of mineral dust particles with sulphuric acid leads to surface modifications of the particles. These surface modifications are most likely responsible for the observed reduction of the IN activation of the particles. The observed particle mass spectra suggest that different treatments lead to different chemical reactions on the particle surface. Possible chemical reaction pathways and products are suggested and the implications on the IN efficiency of the treated dust particles are discussed.
  • Item
    Heterogeneous ice nucleation: Exploring the transition from stochastic to singular freezing behavior
    (München : European Geopyhsical Union, 2011) Niedermeier, D.; Shaw, R.A.; Hartmann, S.; Wex, H.; Clauss, T.; Voigtländer, J.; Stratmann, F.
    Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized, conceptual model to explore the transition between stochastic and singular ice nucleation. This "soccer ball" model treats particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. Even with ice nucleation treated fundamentally as a stochastic process this process can be masked by the heterogeneity of surface properties, as might be typical for realistic atmospheric particle populations. Full evaluation of the model findings will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.
  • Item
    Immersion freezing of birch pollen washing water
    (München : European Geopyhsical Union, 2013) Augustin, S.; Wex, H.; Niedermeier, D.; Pummer, B.; Grothe, H.; Hartmann, S.; Tomsche, L.; Clauss, T.; Voigtländer, J.; Ignatius, K.; Stratmann, F.
    Birch pollen grains are known to be ice nucleating active biological particles. The ice nucleating activity has previously been tracked down to biological macromolecules that can be easily extracted from the pollen grains in water. In the present study, we investigated the immersion freezing behavior of these ice nucleating active (INA) macromolecules. Therefore we measured the frozen fractions of particles generated from birch pollen washing water as a function of temperature at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Two different birch pollen samples were considered, with one originating from Sweden and one from the Czech Republic. For the Czech and Swedish birch pollen samples, freezing was observed to start at −19 and −17 °C, respectively. The fraction of frozen droplets increased for both samples down to −24 °C. Further cooling did not increase the frozen fractions any more. Instead, a plateau formed at frozen fractions below 1. This fact could be used to determine the amount of INA macromolecules in the droplets examined here, which in turn allowed for the determination of nucleation rates for single INA macromolecules. The main differences between the Swedish birch pollen and the Czech birch pollen were obvious in the temperature range between −17 and −24 °C. In this range, a second plateau region could be seen for Swedish birch pollen. As we assume INA macromolecules to be the reason for the ice nucleation, we concluded that birch pollen is able to produce at least two different types of INA macromolecules. We were able to derive parameterizations for the heterogeneous nucleation rates for both INA macromolecule types, using two different methods: a simple exponential fit and the Soccer ball model. With these parameterization methods we were able to describe the ice nucleation behavior of single INA macromolecules from both the Czech and the Swedish birch pollen.
  • Item
    Application of linear polarized light for the discrimination of frozen and liquid droplets in ice nucleation experiments
    (München : European Geopyhsical Union, 2013) Clauss, T.; Kiselev, A.; Hartmann, S.; Augustin, S.; Pfeifer, S.; Niedermeier, D.; Wex, H.; Stratmann, F.
    We report on the development and test results of the new optical particle counter TOPS-Ice (Thermo-stabilized Optical Particle Spectrometer for the detection of Ice). The instrument uses measurements of the cross-polarized scattered light by single particles into the near-forward direction (42.5° ± 12.7°) to distinguish between spherical and non-spherical particles. This approach allows the differentiation between liquid water droplets (spherical) and ice particles (non-spherical) having similar volume-equivalent sizes and therefore can be used to determine the fraction of frozen droplets in a typical immersion freezing experiment. We show that the numerical simulation of the light scattered on non-spherical particles (spheroids in random orientation) considering the actual scattering geometry used in the instrument supports the validity of the approach, even though the cross-polarized component of the light scattered by spherical droplets does not vanish in this scattering angle. For the separation of the ice particle mode from the liquid droplet mode, we use the width of the pulse detected in the depolarization channel instead of the pulse height. Exploiting the intrinsic relationship between pulse height and pulse width for Gaussian pulses allows us to calculate the fraction of frozen droplets even if the liquid droplet mode dominates the particle ensemble. We present test results obtained with TOPS-Ice in the immersion freezing experiments at the laminar diffusion chamber LACIS (Leipzig Aerosol Cloud Interaction Simulator) and demonstrate the excellent agreement with the data obtained in similar experiments with a different optical instrument. Finally, the advantages of using the cross-polarized light measurements for the differentiation of liquid and frozen droplets in the realistic immersion freezing experiments are discussed.
  • Item
    Kaolinite particles as ice nuclei: Learning from the use of different kaolinite samples and different coatings
    (Göttingen : Copernicus, 2014) Wex, H.; Demott, P.J.; Tobo, Y.; Hartmann, S.; Rösch, M.; Clauss, T.; Tomsche, L.; Niedermeier, D.; Stratmann, F.
    Kaolinite particles from two different sources (Fluka and Clay Minerals Society (CMS)) were examined with respect to their ability to act as ice nuclei (IN). This was done in the water-subsaturated regime where often deposition ice nucleation is assumed to occur, and for water-supersaturated conditions, i.e., in the immersion freezing mode. Measurements were done using a flow tube (the Leipzig Aerosol Cloud Interaction Simulator, LACIS) and a continuous-flow diffusion chamber (CFDC). Pure and coated particles were used, with coating thicknesses of a few nanometers or less, where the coating consisted of levoglucosan, succinic acid or sulfuric acid. In general, it was found that the coatings strongly reduced deposition ice nucleation. Remaining ice formation in the water-subsaturated regime could be attributed to immersion freezing, with particles immersed in concentrated solutions formed by the coatings. In the immersion freezing mode, ice nucleation rate coefficients het from both instruments agreed well with each other, particularly when the residence times in the instruments were accounted for. Fluka kaolinite particles coated with either levoglucosan or succinic acid showed the same IN activity as pure Fluka kaolinite particles; i.e., it can be assumed that these two types of coating did not alter the ice-active surface chemically, and that the coatings were diluted enough in the droplets that were formed prior to the ice nucleation, so that freezing point depression was negligible. However, Fluka kaolinite particles, which were either coated with pure sulfuric acid or were first coated with the acid and then exposed to additional water vapor, both showed a reduced ability to nucleate ice compared to the pure particles. For the CMS kaolinite particles, the ability to nucleate ice in the immersion freezing mode was similar for all examined particles, i.e., for the pure ones and the ones with the different types of coating. Moreover, het derived for the CMS kaolinite particles was comparable to het derived for Fluka kaolinite particles coated with sulfuric acid. This is suggestive for the Fluka kaolinite possessing a type of ice-nucleating surface feature which is not present on the CMS kaolinite, and which can be destroyed by reaction with sulfuric acid. This might be potassium feldspar.
  • Item
    A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques
    (München : European Geopyhsical Union, 2015) Hiranuma, N.; Augustin-Bauditz, S.; Bingemer, H.; Budke, C.; Curtius, J.; Danielczok, A.; Diehl, K.; Dreischmeier, K.; Ebert, M.; Frank, F.; Hoffmann, N.; Kandler, K.; Kiselev, A.; Koop, T.; Leisner, T.; Möhler, O.; Nillius, B.; Peckhaus, A.; Rose, D.; Weinbruch, S.; Wex, H.; Boose, Y.; DeMott, P.J.; Hader, J.D.; Hill, T.C.J.; Kanji, Z.A.; Kulkarn, G.; Levin, E.J.T.; McCluskey, C.S.; Murakami, M.; Murray, B.J.; Niedermeier, D.; Petters, M.D.; O'Sullivan, D.; Saito, A.; Schill, G.P.; Tajiri, T.; Tolbert, M.A.; Welti, A.; Whale, T.F.; Wright, T.P.; Yamashita, K.
    Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature (T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, ns, to develop a representative ns(T) spectrum that spans a wide temperature range (−37 °C < T < −11 °C) and covers 9 orders of magnitude in ns. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to ns. In addition, we show evidence that the immersion freezing efficiency expressed in ns of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the ns parameterization solely as a function of temperature. We also characterized the ns(T) spectra and identified a section with a steep slope between −20 and −27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below −27 °C. While the agreement between different instruments was reasonable below ~ −27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in ns was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about −27 and −18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above −18 °C. A possible explanation for the deviation between −27 and −18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based ns(T) and geometric surface area-based ns(T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments.
  • Item
    Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance
    (München : European Geopyhsical Union, 2015) Wex, H.; Augustin-Bauditz, S.; Boose, Y.; Budke, C.; Curtius, J.; Diehl, K.; Dreyer, A.; Frank, F.; Hartmann, S.; Hiranuma, N.; Jantsch, E.; Kanji, Z.A.; Kiselev, A.; Koop, T.; Möhler, O.; Niedermeier, D.; Nillius, B.; Rösch, M.; Rose, D.; Schmidt, C.; Steinke, I.; Stratmann, F.
    Seven different instruments and measurement methods were used to examine the immersion freezing of bacterial ice nuclei from Snomax® (hereafter Snomax), a product containing ice-active protein complexes from non-viable Pseudomonas syringae bacteria. The experimental conditions were kept as similar as possible for the different measurements. Of the participating instruments, some examined droplets which had been made from suspensions directly, and the others examined droplets activated on previously generated Snomax particles, with particle diameters of mostly a few hundred nanometers and up to a few micrometers in some cases. Data were obtained in the temperature range from −2 to −38 °C, and it was found that all ice-active protein complexes were already activated above −12 °C. Droplets with different Snomax mass concentrations covering 10 orders of magnitude were examined. Some instruments had very short ice nucleation times down to below 1 s, while others had comparably slow cooling rates around 1 K min−1. Displaying data from the different instruments in terms of numbers of ice-active protein complexes per dry mass of Snomax, nm, showed that within their uncertainty, the data agree well with each other as well as to previously reported literature results. Two parameterizations were taken from literature for a direct comparison to our results, and these were a time-dependent approach based on a contact angle distribution (Niedermeier et al., 2014) and a modification of the parameterization presented in Hartmann et al. (2013) representing a time-independent approach. The agreement between these and the measured data were good; i.e., they agreed within a temperature range of 0.6 K or equivalently a range in nm of a factor of 2. From the results presented herein, we propose that Snomax, at least when carefully shared and prepared, is a suitable material to test and compare different instruments for their accuracy of measuring immersion freezing.
  • Item
    Ice nucleation by water-soluble macromolecules
    (München : European Geopyhsical Union, 2015) Pummer, B.G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C.J.; Huber, R.G.; Liedl, K.R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C.E.; Wex, H.; Grothe, H.; Pöschl, U.; Koop, T.; Fröhlich-Nowoisky, J.
    Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models.