Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Self‐Patterning of Multifunctional Heusler Membranes by Dewetting

2021, Lünser, Klara, Diestel, Anett, Nielsch, Kornelius, Fähler, Sebastian

Ni-Mn-based Heusler alloys are an emerging class of materials which enable actuation by (magnetic) shape memory effects, magnetocaloric cooling, and thermomagnetic energy harvesting. Multifunctional materials have a particular advantage for miniaturization since their functionality is already built within the material. However, often complex microtechnological processing is required to bring these materials into shape. Here, self-organized formation of single crystalline membranes having arrays of rectangular holes with high aspect ratio is demonstrated. Dewetting avoids the need for complicated processing and allows to prepare freestanding Ni–Mn–Ga–Co membranes. These membranes are martensitic and magnetic, and their functional properties are not disturbed by self-patterning. Feature sizes of these membranes can be tailored by film thickness and heat treatment, and the tendencies can be explained with dewetting. As an outlook, the advantages of these multifunctional membranes for magnetocaloric and thermomagnetic microsystems are sketched. © 2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Efficient and affordable thermomagnetic materials for harvesting low grade waste heat

2021, Dzekan, Daniel, Waske, Anja, Nielsch, Kornelius, Fähler, Sebastian

Industrial processes release substantial quantities of waste heat, which can be harvested to generate electricity. At present, the conversion of low grade waste heat to electricity relies solely on thermoelectric materials, but such materials are expensive and have low thermodynamic efficiencies. Although thermomagnetic materials may offer a promising alternative, their performance remains to be evaluated, thereby hindering their real-world application. Here, the efficiency and cost effectiveness of thermomagnetic materials are evaluated for the usage in motors, oscillators, and generators for converting waste heat to electricity. The analysis reveals that up to temperature differences of several 10 K, the best thermomagnetic materials have the potential to compete with thermoelectric materials. Importantly, it is found that the price per watt of some thermomagnetic materials is much lower compared to that of present-day thermoelectrics, which can become competitive with conventional power plants. This materials library enables the selection of the best available thermomagnetic materials for harvesting waste heat and gives guidelines for their future development.

Loading...
Thumbnail Image
Item

Effect of Silver Doping on the Superconducting and Structural Properties of YBCO Films Grown by PLD on Different Templates

2022, Shipulin, Ilya A., Thomas, Aleena Anna, Holleis, Sigrid, Eisterer, Michael, Nielsch, Kornelius, Hühne, Ruben

We report the local structural and superconducting properties of undoped and Ag-doped YBa2Cu3O6+x (YBCO) films with a thickness of up to 1 µm prepared by pulsed laser deposition on SrTiO3 (STO) single crystals and on ion-beam-assisted deposition (IBAD) and rolling-assisted biaxially textured substrate (RABiTS)-based metal templates. X-ray diffraction demonstrates the high crystalline quality of the films on both single crystalline substrates and metal-based templates, respectively. Although there was only a slight decrease in Tc of up to 1.5 K for the Ag-doped YBCO films on all substrates, we found significant changes in their transport characteristics. The effect of the silver doping mainly depended on the concentration of silver, the type of substrate, and the temperature and magnetic field. In general, the greatest improvement in Jc over a wide range of magnetic fields and temperatures was observed for the 5%Ag-doped YBCO films on STO substrates, showing a significant increase compared to undoped films. Furthermore, a slight Jc improvement was observed for the 2%Ag-doped YBCO films on the RABiTS templates at temperatures below 65 K, whereas Jc decreased for the Ag-doped films on IBAD-MgO-based templates compared to undoped YBCO films. Using detailed electron microscopy studies, small changes in the local microstructure of the Ag-doped YBCO films were revealed; however, no clear correlation was found with the transport properties of the films.

Loading...
Thumbnail Image
Item

Waste Recycling in Thermoelectric Materials

2020, Bahrami, Amin, Schierning, Gabi, Nielsch, Kornelius

Thermoelectric (TE) technology enables the efficient conversion of waste heat generated in homes, transport, and industry into promptly accessible electrical energy. Such technology is thus finding increasing applications given the focus on alternative sources of energy. However, the synthesis of TE materials relies on costly and scarce elements, which are also environmentally damaging to extract. Moreover, spent TE modules lead to a waste of resources and cause severe pollution. To address these issues, many laboratory studies have explored the synthesis of TE materials using wastes and the recovery of scarce elements from spent modules, e.g., utilization of Si slurry as starting materials, development of biodegradable TE papers, and bacterial recovery and recycling of tellurium from spent TE modules. Yet, the outcomes of such work have not triggered sustainable industrial practices to the extent needed. This paper provides a systematic overview of the state of the art with a view to uncovering the opportunities and challenges for expanded application. Based on this overview, it explores a framework for synthesizing TE materials from waste sources with efficiencies comparable to those made from raw materials.

Loading...
Thumbnail Image
Item

Europium Clustering and Glassy Magnetic Behavior in Inorganic Clathrate-VIII Eu8Ga16Ge30

2022, Pérez, Nicolás, Sahoo, Manaswini, Schierning, Gabi, Nielsch, Kornelius, Nolas, George S.

The temperature- and field-dependent, electrical and thermal properties of inorganic clathrate-VIII Eu8Ga16Ge30 were investigated. The type VIII clathrates were obtained from the melt of elements as reported previously. Specifically, the electrical resistivity data show hysteretic magnetoresistance at low temperatures, and the Seebeck coefficient and Hall data indicate magnetic interactions that affect the electronic structure in this material. Heat capacity and thermal conductivity data corroborate these findings and reveal the complex behavior due to Eu2+ magnetic ordering and clustering from approximately 13 to 4 K. Moreover, the low-frequency dynamic response indicates Eu8Ga16Ge30 to be a glassy magnetic system. In addition to advancing our fundamental understanding of the physical properties of this material, our results can be used to further the research for potential applications of interest in the fields of magnetocalorics or thermoelectrics.