Search Results

Now showing 1 - 3 of 3
  • Item
    Cold Atmospheric Pressure Plasma Is Effective against P. gingivalis (HW24D-1) Mature Biofilms and Non-Genotoxic to Oral Cells
    (Basel : MDPI, 2022) de Morais Gouvêa Lima, Gabriela; Carta, Celina Faig Lima; Borges, Aline Chiodi; Nishime, Thalita Mayumi Castaldelli; da Silva, Cézar Augusto Villela; Caliari, Marcelo Vidigal; Mayer, Marcia Pinto Alves; Kostov, Konstantin Georgiev; Koga-Ito, Cristiane Yumi
    The effects of helium cold atmospheric pressure plasma (He-CAPP) jet on Porphyromonas gingivalis (HW24D-1) biofilm, on human gingival fibroblasts (HGF) and human gingival keratinocytes (OBA-9) were assessed. Standardized suspension of P. gingivalis was obtained, and biofilms were grown anaerobically for 48 h. After exposition to He-CAPP, the biofilm viability was evaluated by XTT assay. HGF were grown at 37 °C, in an CO2 chamber in DMEM, while OBA-9 cells were cultured in keratinocyte serum-free medium. After 24 h, plates were exposed to He-CAPP for 1 to 7 min. Plasma was generated using a commercial AC power supply with amplitude modulated signal (voltage amplitude of 20 kVp-p, frequency of 31.0 kHz and duty cycle of 22%). The corresponding discharge power was 0.6W at He flow rate of 1 L/min. DNA damage was accessed by static cytometry. Data were analyzed by GraphPad Prism (p < 0.05). Significant reductions in P. gingivalis viability in relation to non-treated groups were detected (p < 0.0001), directly proportional to exposure time. Treated groups were slightly aneuploid after 5- and 7-min treatment in HGF, and for 3 min in OBA-9 cells, with 1.2 DNA index mean. Helium cold atmospheric pressure plasma jet showed inhibitory effect on P. gingivalis mature biofilm and was not genotoxic for epithelial gingival cells and human oral fibroblasts.
  • Item
    Cold Atmospheric Plasma Jet as a Possible Adjuvant Therapy for Periodontal Disease
    (Basel : MDPI, 2021) Lima, Gabriela de Morais Gouvêa; Borges, Aline Chiodi; Nishime, Thalita Mayumi Castaldelli; Santana-Melo, Gabriela de Fatima; Kostov, Konstantin Georgiev; Mayer, Marcia Pinto Alves; Koga-Ito, Cristiane Yumi
    Due to the limitations of traditional periodontal therapies, and reported cold atmospheric plasma anti-inflammatory/antimicrobial activities, plasma could be an adjuvant therapy to periodontitis. Porphyromonas gingivalis was grown in blood agar. Standardized suspensions were plated on blood agar and plasma-treated for planktonic growth. For biofilm, dual-species Streptococcus gordonii + P. gingivalis biofilm grew for 48 h and then was plasma-treated. XTT assay and CFU counting were performed. Cytotoxicity was accessed immediately or after 24 h. Plasma was applied for 1, 3, 5 or 7 min. In vivo: Thirty C57BI/6 mice were subject to experimental periodontitis for 11 days. Immediately after ligature removal, animals were plasma-treated for 5 min once-Group P1 (n = 10); twice (Day 11 and 13)-Group P2 (n = 10); or not treated-Group S (n = 10). Mice were euthanized on day 15. Histological and microtomography analyses were performed. Significance level was 5%. Halo diameter increased proportionally to time of exposure contrary to CFU/mL counting. Mean/SD of fibroblasts viability did not vary among the groups. Plasma was able to inhibit P. gingivalis in planktonic culture and biofilm in a cell-safe manner. Moreover, plasma treatment in vivo, for 5 min, tends to improve periodontal tissue recovery, proportionally to the number of plasma applications.
  • Item
    Effect of Cold Atmospheric Plasma Jet Associated to Polyene Antifungals on Candida albicans Biofilms
    (Basel : MDPI, 2021) Leite, Lady Daiane Pereira; Oliveira, Maria Alcionéia Carvalho de; Vegian, Mariana Raquel da Cruz; Sampaio, Aline da Graça; Nishime, Thalita Mayumi Castaldelli; Kostov, Konstantin Georgiev; Koga-Ito, Cristiane Yumi
    The increasing incidence of antifungal resistance represents a great challenge in the medical area and, for this reason, new therapeutic alternatives for the treatment of fungal infections are urgently required. Cold atmospheric plasma (CAP) has been proposed as a promising alternative technique for the treatment of superficial candidiasis, with inhibitory effect both in vitro and in vivo. However, little is known on the association of CAP with conventional antifungals. The aim of this study was to evaluate the effects of the association between CAP and conventional polyene antifungals on Candida albicans biofilms. C. albicans SC 5314 and a clinical isolate were used to grow 24 or 48 h biofilms, under standardized conditions. After that, the biofilms were exposed to nystatin, amphotericin B and CAP, separately or in combination. Different concentrations of the antifungals and sequences of treatment were evaluated to establish the most effective protocol. Biofilms viability after the treatments was compared to negative control. Data were compared by One-way ANOVA and post hoc Tukey (5%). The results demonstrate that 5 min exposure to CAP showed more effective antifungal effect on biofilms when compared to nystatin and amphotericin B. Additionally, it was detected that CAP showed similar (but smaller in magnitude) effects when applied in association with nystatin and amphotericin B at 40 µg/mL and 60 µg/mL. Therefore, it can be concluded that the application of CAP alone was more effective against C. albicans biofilms than in combination with conventional polyene antifungal agents.