Search Results

Now showing 1 - 2 of 2
  • Item
    Independent Geometrical Control of Spin and Charge Resistances in Curved Spintronics
    (Washington, DC : ACS Publ., 2019) Das, Kumar Sourav; Makarov, Denys; Gentile, Paola; Cuoco, Mario; Van Wees, Bart J.; Ortix, Carmine; Vera-Marun, Ivan J.
    Spintronic devices operating with pure spin currents represent a new paradigm in nanoelectronics, with a higher energy efficiency and lower dissipation as compared to charge currents. This technology, however, will be viable only if the amount of spin current diffusing in a nanochannel can be tuned on demand while guaranteeing electrical compatibility with other device elements, to which it should be integrated in high-density three-dimensional architectures. Here, we address these two crucial milestones and demonstrate that pure spin currents can effectively propagate in metallic nanochannels with a three-dimensional curved geometry. Remarkably, the geometric design of the nanochannels can be used to reach an independent tuning of spin transport and charge transport characteristics. These results laid the foundation for the design of efficient pure spin current-based electronics, which can be integrated in complex three-dimensional architectures. © 2019 American Chemical Society.
  • Item
    Theoretical Prediction of a Giant Anisotropic Magnetoresistance in Carbon Nanoscrolls
    (Washington, DC : ACS Publ., 2017-4-12) Chang, Ching-Hao; Ortix, Carmine
    Snake orbits are trajectories of charge carriers curving back and forth that form at an interface where either the magnetic field direction or the charge carrier type are inverted. In ballistic samples, their presence is manifested in the appearance of magnetoconductance oscillations at small magnetic fields. Here we show that signatures of snake orbits can also be found in the opposite diffusive transport regime. We illustrate this by studying the classical magnetotransport properties of carbon tubular structures subject to relatively weak transversal magnetic fields where snake trajectories appear in close proximity to the zero radial field projections. In carbon nanoscrolls, the formation of snake orbits leads to a strongly directional dependent positive magnetoresistance with an anisotropy up to 80%.