Search Results

Now showing 1 - 4 of 4
  • Item
    Impacts of meeting minimum access on critical earth systems amidst the Great Inequality
    (London : Springer Nature, 2022) Rammelt, Crelis F.; Gupta, Joyeeta; Liverman, Diana; Scholtens, Joeri; Ciobanu, Daniel; Abrams, Jesse F.; Bai, Xuemei; Gifford, Lauren; Gordon, Christopher; Hurlbert, Margot; Inoue, Cristina Y. A.; Jacobson, Lisa; Lade, Steven J.; Lenton, Timothy M.; McKay, David I. Armstrong; Nakicenovic, Nebojsa; Okereke, Chukwumerije; Otto, Ilona M.; Pereira, Laura M.; Prodani, Klaudia; Rockström, Johan; Stewart-Koster, Ben; Verburg, Peter H.; Zimm, Caroline
    The Sustainable Development Goals aim to improve access to resources and services, reduce environmental degradation, eradicate poverty and reduce inequality. However, the magnitude of the environmental burden that would arise from meeting the needs of the poorest is under debate—especially when compared to much larger burdens from the rich. We show that the ‘Great Acceleration’ of human impacts was characterized by a ‘Great Inequality’ in using and damaging the environment. We then operationalize ‘just access’ to minimum energy, water, food and infrastructure. We show that achieving just access in 2018, with existing inequalities, technologies and behaviours, would have produced 2–26% additional impacts on the Earth’s natural systems of climate, water, land and nutrients—thus further crossing planetary boundaries. These hypothetical impacts, caused by about a third of humanity, equalled those caused by the wealthiest 1–4%. Technological and behavioural changes thus far, while important, did not deliver just access within a stable Earth system. Achieving these goals therefore calls for a radical redistribution of resources.
  • Item
    Changing seasonal temperature offers a window of opportunity for stricter climate policy
    (Amsterdam [u.a.] : Elsevier Science, 2022) Pfeifer, Lena; Otto, Ilona M.
    Environmental catastrophes, including the increased severity and frequency of climate extremes, can act as “windows of opportunities” that challenge citizens’ mental models and motivate them to engage in reflective processes, challenging their pre-conceived ideas. Less well understood is whether experiencing changing weather conditions, common in mid-latitudes, can have a similar effect and increase the citizens’ concerns about climate change and their willingness to accept more stringent climate policies. In this paper, we investigate the effects of changing seasonal temperature on the perceived seriousness of climate change and willingness to mitigate climate change. We use data from four yearly waves of a spatially explicit representative population survey in Germany and weather records from the postal code areas in which they live. To our knowledge, this study is the first analysis to link individual perceptions towards climate change and different mitigation options with seasonal temperature changes at specific locations in Europe. The analyzed perceptions were strongly influenced by socio-demographic characteristics and broader societal changes, as well as individual experiences of seasonal temperatures. The results show that experienced seasonal temperature change influences personal climate change concerns as well as the willingness to mitigate climate change, although with a weaker effect. The results indicate that it is the absolute temperature variation experienced that is important, rather than whether it is getting colder or warmer than usual. Considering the influences identified in this study can offer a window of opportunity for more stringent and targeted climate change policy.
  • Item
    Understanding Regime Shifts in Social-Ecological Systems Using Data on Direct Ecosystem Service Use
    (Lausanne : Frontiers Media, 2021) Censkowsky, Philipp; Otto, Ilona M.
    This paper takes a new look on transition processes in social-ecological systems, identified based on household use of direct ecosystem services in a case study in KwaZulu-Natal, South Africa. We build on the assumption that high dependence on local ecosystems for basic needs satisfaction corresponds to a “green loop” type of system, with direct feedbacks between environmental degradation and human well-being. Increasing use of distant ecosystems marks a regime shift and with that, the transition to “red loops” in which feedbacks between environmental degradation and human well-being are only indirect. These systems are characterized by a fundamentally different set of sustainability problems as well as distinct human-nature connections. The analysis of a case study in KwaZulu-Natal, South Africa, shows that social-ecological systems identified as green loops in 1993, the average share of households using a characteristic bundle of direct ecosystem services drops consistently (animal production, crop production, natural building materials, freshwater, wood). Conversely, in systems identified as red loops, mixed tendencies occur which underpins non-linearities in changing human-nature relationships. We propose to apply the green to red loop transition model to other geographical contexts with regards to studying the use of local ecosystem services as integral part of transformative change in the Anthropocene.