Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

The Localization Behavior of Different CNTs in PC/SAN Blends Containing a Reactive Component

2021-3-1, Gültner, Marén, Boldt, Regine, Formanek, Petr, Fischer, Dieter, Simon, Frank, Pötschke, Petra

Co-continuous blend systems of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), commercial non-functionalized multi-walled carbon nanotubes (MWCNTs) or various types of commercial and laboratory functionalized single-walled carbon nanotubes (SWCNTs), and a reactive component (RC, N-phenylmaleimide styrene maleic anhydride copolymer) were melt compounded in one step in a microcompounder. The blend system is immiscible, while the RC is miscible with SAN and contains maleic anhydride groups that have the potential to reactively couple with functional groups on the surface of the nanotubes. The influence of the RC on the localization of MWCNTs and SWCNTs (0.5 wt.%) was investigated by transmission electron microscopy (TEM) and energy-filtered TEM. In PC/SAN blends without RC, MWCNTs are localized in the PC component. In contrast, in PC/SAN-RC, the MWCNTs localize in the SAN-RC component, depending on the RC concentration. By adjusting the MWCNT/RC ratio, the localization of the MWCNTs can be tuned. The SWCNTs behave differently compared to the MWCNTs in PC/SAN-RC blends and their localization occurs either only in the PC or in both blend components, depending on the type of the SWCNTs. CNT defect concentration and surface functionalities seem to be responsible for the localization differences.

Loading...
Thumbnail Image
Item

Aerogels based on reduced graphene oxide/cellulose composites: Preparation and vapour sensing abilities

2020, Chen, Yian, Pötschke, Petra, Pionteck, Jürgen, Voit, Brigitte, Qi, Haisong

This paper reports on the preparation of cellulose/reduced graphene oxide (rGO) aerogels for use as chemical vapour sensors. Cellulose/rGO composite aerogels were prepared by dissolving cellulose and dispersing graphene oxide (GO) in aqueous NaOH/urea solution, followed by an in-situ reduction of GO to reduced GO (rGO) and lyophilisation. The vapour sensing properties of cellulose/rGO composite aerogels were investigated by measuring the change in electrical resistance during cyclic exposure to vapours with varying solubility parameters, namely water, methanol, ethanol, acetone, toluene, tetrahydrofuran (THF), and chloroform. The increase in resistance of aerogels on exposure to vapours is in the range of 7 to 40% with methanol giving the highest response. The sensing signal increases almost linearly with the vapour concentration, as tested for methanol. The resistance changes are caused by the destruction of the conductive filler network due to a combination of swelling of the cellulose matrix and adsorption of vapour molecules on the filler surfaces. This combined mechanism leads to an increased sensing response with increasing conductive filler content. Overall, fast reaction, good reproducibility, high sensitivity, and good differentiation ability between different vapours characterize the detection behaviour of the aerogels. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Thermoelectric Properties of N-Type Poly (Ether Ether Ketone)/Carbon Nanofiber Melt-Processed Composites

2022, Paleo, Antonio Jose, Krause, Beate, Soares, Delfim, Melle-Franco, Manuel, Muñoz, Enrique, Pötschke, Petra, Rocha, Ana Maria

The thermoelectric properties, at temperatures from 30 °C to 100 °C, of melt-processed poly(ether ether ketone) (PEEK) composites prepared with 10 wt.% of carbon nanofibers (CNFs) are discussed in this work. At 30 °C, the PEEK/CNF composites show an electrical conductivity (σ) of ~27 S m−1 and a Seebeck coefficient (S) of −3.4 μV K−1, which means that their majority charge carriers are electrons. The origin of this negative Seebeck is deduced because of the impurities present in the as-received CNFs, which may cause sharply varying and localized states at approximately 0.086 eV above the Fermi energy level (EF) of CNFs. Moreover, the lower S, in absolute value, found in PEEK/CNF composites, when compared with the S of as-received CNFs (−5.3 μV K−1), is attributed to a slight electron withdrawing from the external layers of CNFs by the PEEK matrix. At temperatures from 30 °C to 100 °C, the σ (T) of PEEK/CNF composites, in contrast to the σ (T) of as-received CNFs, shows a negative temperature effect, understood through the 3D variable-range hopping (VRH) model, as a thermally activated hopping mechanism across a random network of potential wells. Moreover, their nonlinear S (T) follows the same behavior reported before for polypropylene composites melt-processed with similar CNFs at the same interval of temperatures.

Loading...
Thumbnail Image
Item

Blend Structure and n-Type Thermoelectric Performance of PA6/SAN and PA6/PMMA Blends Filled with Singlewalled Carbon Nanotubes

2021-4-28, Krause, Beate, Liguoro, Alice, Pötschke, Petra

The present study investigates how the formation of melt-mixed immiscible blends based on PA6/SAN and PA6/PMMA filled with single walled nanotubes (SWCNTs) affects the thermoelectric (TE) properties. In addition to the detailed investigation of the blend morphology with compositions between 100/0 wt.% and 50/50 wt.%, the thermoelectric properties are investigated on blends with different SWCNT concentrations (0.25–3.0 wt.%). Both PA6 and the blend composites with the used type of SWCNTs showed negative Seebeck coefficients. It was shown that the PA6 matrix polymer, in which the SWCNTs are localized, mainly influenced the thermoelectric properties of blends with high SWCNT contents. By varying the blend composition, an increase in the absolute Seebeck coefficient, power factor (PF), and figure of merit (ZT) was achieved compared to the PA6 composite which is mainly related to the selective localization and enrichment of SWCNTs in the PA6 matrix at constant SWCNT loading. The maximum PFs achieved were 0.22 µW/m·K2 for PA6/SAN/SWCNT 70/30/3 wt.% and 0.13 µW/m·K2 for PA6/PMMA/SWCNT 60/40/3 wt.% compared to 0.09 µW/m·K2 for PA6/3 wt.% SWCNT which represent increases to 244% and 144%, respectively. At higher PMMA or SAN concentration, the change from matrix-droplet to a co-continuous morphology started, which, despite higher SWCNT enrichment in the PA6 matrix, disturbed the electrical conductivity, resulting in reduced PFs with still increasing Seebeck coefficients. At SWCNT contents between 0.5 and 3 wt.% the increase in the absolute Seebeck coefficient was compensated by lower electrical conductivity resulting in lower PF and ZT as compared to the PA6 composites.

Loading...
Thumbnail Image
Item

Nanocomposites with p-and n-type conductivity controlled by type and content of nanotubes in thermosets for thermoelectric applications

2020, Kröning, Katharina, Krause, Beate, Pötschke, Petra, Fiedler, Bodo

In this work, composites based on epoxy resin and various carbon nanotubes (CNTs) were studied regarding their thermoelectric properties. The epoxy composites were prepared by infiltration of preformed CNT buckypapers. The influence of different types of CNTs on the Seebeck coefficient was investigated, namely lab-made and commercially available multi walled carbon nanotubes (MWCNTs), lab-made nitrogen doped MWCNTs (N-MWCNT) and commercially available single walled carbon nanotubes (SWCNTs). It was found that only by varying the lab-made MWCNT content could both n-and p-type composites be produced with Seebeck coefficients between -9.5 and 3.1 µV/K. The incorporation of N-MWCNTs resulted in negative Seebeck coefficients of -11.4 to -17.4 µV/K. Thus, the Seebeck coefficient of pure SWCNT changed from 37.4 to -25.5 µV/K in the epoxy/1 wt. % SWCNT composite. A possible explanation for the shift in the Seebeck coefficient is the change of the CNTs Fermi level depending on the number of epoxy molecules on the CNT surface. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Effect of filler synergy and cast film extrusion parameters on extrudability and direction-dependent conductivity of PVDF/carbon nanotube/carbon black composites

2020, Krause, Beate, Kunz, Karina, Kretzschmar, Bernd, Kühnert, Ines, Pötschke, Petra

In the present study, melt-mixed composites based of poly (vinylidene fluoride) (PVDF) and fillers with different aspect ratios (carbon nanotubes (CNTs), carbon black (CB)) and their mixtures in composites were investigated whereby compression-molded plates were compared with melt-extruded films. The processing-related orientation of CNTs with a high aspect ratio leads to direction-dependent electrical and mechanical properties, which can be reduced by using mixed filler systems with the low aspect ratio CB. An upscaling of melt mixing from small scale to laboratory scale was carried out. From extruded materials, films were prepared down to a thickness of 50 µm by cast film extrusion under variation of the processing parameters. By combining CB and CNTs in PVDF, especially the electrical conductivity through the film could be increased compared to PVDF/CNT composites due to additional contact points in the sample thickness. The alignment of the fillers in the two directions within the films was deduced from the differences in electrical and mechanical film properties, which showed higher values in the extrusion direction than perpendicular to it.

Loading...
Thumbnail Image
Item

Nonlinear Thermopower Behaviour of N-Type Carbon Nanofibres and Their Melt Mixed Polypropylene Composites

2022-1-10, Paleo, Antonio J., Krause, Beate, Cerqueira, Maria F., Muñoz, Enrique, Pötschke, Petra, Rocha, Ana M.

The temperature dependent electrical conductivity σ (T) and thermopower (Seebeck coeffi-cient) S (T) from 303.15 K (30◦ C) to 373.15 K (100◦ C) of an as-received commercial n-type vapour grown carbon nanofibre (CNF) powder and its melt-mixed polypropylene (PP) composite with 5 wt.% of CNFs have been analysed. At 30◦ C, the σ and S of the CNF powder are ~136 S m−1 and −5.1 µV K−1, respectively, whereas its PP/CNF composite showed lower conductivities and less negative S-values of ~15 S m−1 and −3.4 µV K−1, respectively. The σ (T) of both samples presents a dσ/dT < 0 character described by the 3D variable range hopping (VRH) model. In contrast, their S (T) shows a dS/dT > 0 character, also observed in some doped multiwall carbon nanotube (MWCNT) mats with nonlinear thermopower behaviour, and explained here from the contribution of impurities in the CNF structure such as oxygen and sulphur, which cause sharply varying and localized states at approximately 0.09 eV above their Fermi energy level (EF).

Loading...
Thumbnail Image
Item

Polyethylene Glycol as Additive to Achieve N-Conductive Melt-Mixed Polymer/Carbon Nanotube Composites for Thermoelectric Application

2022, Krause, Beate, Pötschke, Petra

The development of thermoelectric (TE) materials based on thermoplastic polymers and carbon nanotubes is a focus of current TE research activities. For a TE module, both p- and n-conductive composites are required, whereby the production of n-conductive materials is a particular challenge. The present study investigates whether adding polyethylene glycol (PEG) as n-dopant during the melt-mixing of the conductive composites based on polycarbonate, poly(ether ether ketone), or poly(butylene terephthalate) with singlewalled carbon nanotubes (0.5 to 2 wt%) is a possible solution. It was shown that for all three polymer types, a change in the sign of the Seebeck coefficient from positive to negative could be achieved when at least 1.5 wt% PEG was added. The most negative Seebeck coefficients were determined to be −30.1 µV/K (PC), −44.1 µV/K (PEEK), and −14.5 µV/K (PBT). The maximal power factors ranged between 0.0078 µW/m·K2 (PC), 0.035 µW/m·K2 (PEEK), and 0.0051 µW/m·K2 (PBT).