Search Results

Now showing 1 - 2 of 2
  • Item
    Mixed Carbon Nanomaterial/Epoxy Resin for Electrically Conductive Adhesives
    (Basel : MDPI, 2020) Lopes, Paulo E.; Moura, Duarte; Hilliou, Loic; Krause, Beate; Pötschke, Petra; Figueiredo, Hugo; Alves, Ricardo; Lepleux, Emmanuel; Pacheco, Louis; Paiva, Maria C.
    The increasing complexity of printed circuit boards (PCBs) due to miniaturization, increased the density of electronic components, and demanding thermal management during the assembly triggered the research of innovative solder pastes and electrically conductive adhesives (ECAs). Current commercial ECAs are typically based on epoxy matrices with a high load (>60%) of silver particles, generally in the form of microflakes. The present work reports the production of ECAs based on epoxy/carbon nanomaterials using carbon nanotubes (single and multi-walled) and exfoliated graphite, as well as hybrid compositions, within a range of concentrations. The composites were tested for morphology (dispersion of the conductive nanomaterials), electrical and thermal conductivity, rheological characteristics and deposition on a test PCB. Finally, the ECA’s shelf life was assessed by mixing all the components and conductive nanomaterials, and evaluating the cure of the resin before and after freezing for a time range up to nine months. The ECAs produced could be stored at −18 °C without affecting the cure reaction.
  • Item
    Polylactic Acid/Carbon Nanoparticle Composite Filaments for Sensing
    (Basel : MDPI, 2021-3-15) Silva, Mariana M.; Lopes, Paulo E.; Li, Yilong; Pötschke, Petra; Ferreira, Fernando N.; Paiva, Maria C.
    Polylactic acid (PLA) is a bio-based, biodegradable polymer that presents high potential for biomedical and sensing applications. Ongoing works reported in the literature concern mainly applications based on 3D printing, while textile applications are hindered by the limited flexibility of PLA and its composite filaments. In the present work, PLA/multiwall carbon nanotube (MWCNT) composite filaments were produced with enhanced flexibility and electrical conductivity, which may be applied on a textile structure. A biodegradable plasticizer was incorporated in the nanocomposites, aiming at improving MWCNT dispersion and increasing the flexibility of the filaments. Filaments were produced with a range of compositions and their morphology was characterized as well as their thermal, thermomechanical, and electrical properties. Selected compositions were tested for sensing activity using saturated acetone vapor, demonstrating a suitable response and potential for the application in fabrics with sensing capacity.