Search Results

Now showing 1 - 4 of 4
  • Item
    Annual shoot growth on apple trees with variable canopy leaf area and crop load in response to LiDAR scanned leaf area to fruit ratio
    (Lublin : IA PAS, 2022) Penzel, Martin; Tsoulias, Nikos
    In tree fruit crops, the crop load is one factor that has an influence on the vegetative growth of the trees. However, since trees vary in leaf area and associated fruit bearing capacity, the number of fruit per tree alone is not sufficient to predict their vegetative growth. In the present study, it was investigated whether the leaf area to fruit ratio of trees variable in size and crop load, measured automatically with a LiDAR laser scanner, have an influence on growth properties of the annual shoots. Canopy leaf area, the number of fruit per tree and the leaf area to fruit ratio of apple trees from two commercial apple orchards of the cultivar 'Gala' grown on sandy soils were scanned with a LiDAR laser scanner over a two-year period (n=12 trees per orchard and year). Additionally, the amount of carbon partitioned to fruit and annual shoot growth was quantified for each tree in both years (n=36). No correlation between the number of fruit per tree and the canopy leaf area alone to the amount of carbon partitioned to annual shoot growth was found in both orchards. However, the carbon partitioned to fruit correlated to the leaf area to fruit ratio, while the amount of carbon partitioned to the annual shoot growth was only correlated to the leaf area to fruit ratio in the young orchard. The inter-tree variability in shoot properties has been described. Nevertheless, it was found that the leaf area to fruit ratio is a weak indicator for shoot properties in apple trees, especially in the mature orchards.
  • Item
    Carbon consumption of developing fruit and the fruit bearing capacity of individual RoHo 3615 and Pinova apple trees
    (Lublin : IA PAS, 2020) Penzel, Martin; Lakso, Alan Neil; Tsoulias, Nikos; Zude-Sasse, Manuela
    This paper describes an approach to estimate the photosynthetic capacity and derive the optimum fruit number for each individual tree, in order to achieve a defined fruit size, which is named as the fruit bearing capacity of the tree. The estimation of fruit bearing capacity was carried out considering the total leaf area per tree as measured with a 2-D LiDAR laser scanner, LALiDAR, and key carbon-related variables of the trees including leaf gas exchange, fruit growth and respiration, in two commercial apple orchards. The range between minLALiDAR and maxLALiDAR was found to be 2.4 m on Pinova and 4.3 m on RoHo 3615 at fully developed canopy. The daily C requirement of the growing fruit and the associated leaf area demand, necessary to meet the average daily fruit C requirements showed seasonal variation, with maximum values in the middle of the growing period. The estimated fruit bearing capacity ranged from 33-95 fruit tree-1 and 45-121 fruit tree-1 on the trees of Pinova and RoHo 3615, respectively. This finding demonstrates sub-optimal crop load at harvest time in both orchards, above or below the fruit bearing capacity for individual trees. In conclusion, the LiDAR measurements of the leaf area combined with a carbon balance model allows for the estimation of fruit bearing capacity for individual trees for precise crop load management. © 2020 Polish Academy of Sciences. All rights reserved.
  • Item
    Modeling of Individual Fruit-Bearing Capacity of Trees Is Aimed at Optimizing Fruit Quality of Malus x domestica Borkh. 'Gala'
    (Lausanne : Frontiers Media, 2021) Penzel, Martin; Herppich, Werner B.; Weltzien, Cornelia; Tsoulias, Nikos; Zude-Sasse, Manuela
    The capacity of apple trees to produce fruit of a desired diameter, i.e., fruit-bearing capacity (FBC), was investigated by considering the inter-tree variability of leaf area (LA). The LA of 996 trees in a commercial apple orchard was measured by using a terrestrial two-dimensional (2D) light detection and ranging (LiDAR) laser scanner for two consecutive years. The FBC of the trees was simulated in a carbon balance model by utilizing the LiDAR-scanned total LA of the trees, seasonal records of fruit and leaf gas exchanges, fruit growth rates, and weather data. The FBC was compared to the actual fruit size measured in a sorting line on each individual tree. The variance of FBC was similar in both years, whereas each individual tree showed different FBC in both seasons as indicated in the spatially resolved data of FBC. Considering a target mean fruit diameter of 65 mm, FBC ranged from 84 to 168 fruit per tree in 2018 and from 55 to 179 fruit per tree in 2019 depending on the total LA of the trees. The simulated FBC to produce the mean harvest fruit diameter of 65 mm and the actual number of the harvested fruit >65 mm per tree were in good agreement. Fruit quality, indicated by fruit's size and soluble solids content (SSC), showed enhanced percentages of the desired fruit quality according to the seasonally total absorbed photosynthetic energy (TAPE) of the tree per fruit. To achieve a target fruit diameter and reduce the variance in SSC at harvest, the FBC should be considered in crop load management practices. However, achieving this purpose requires annual spatial monitoring of the individual FBC of trees.
  • Item
    Thinning efficacy of metamitron on young 'RoHo 3615' (Evelina®) apple
    (Amsterdam [u.a.] : Elsevier Science, 2020) Penzel, Martin; Kröling, Christian
    To achieve a high quantity of premium class fruit, chemical thinning is an important component of crop load management in apples. For this purpose, the triazine-type photosynthetic inhibitor metamitron was registered for fruit thinning in Germany. Frequent studies demonstrated consistent thinning effects of metamitron on trees of different apple and pear cultivars. In the present study, the efficacy of metamitron applied at a low concentration (165 g ha−1) was investigated in 2016 and 2017 on young 'RoHo3615' apple trees, planted in 2014. The highest fruit set reduction was achieved when metamitron was applied twice. Single application, in contrast, led to variable results and pointed out the strong dependence of the thinning efficacy of metamitron on favourable weather conditions. Adding citric acid or the growth regulator prohexadione-Ca in combination with ammonium sulphate did not affect the thinning efficacy of metamitron. The fruit quality was high in any treatment and no effects of thinning treatment on fruit colouration or percentage of skin russeting were observed. Consequently, metamitron is an effective fruit thinning agent for young apple trees, which can be additionally used in combination with the mentioned substances, while maintaining a high fruit quality