Search Results

Now showing 1 - 2 of 2
  • Item
    Systematic evaluation of scenario assessments supporting sustainable integrated natural resources management: Evidence from four case studies in Africa
    (Wolfville : The Resilience Alliance, 2018) Reinhardt, Julia; Liersch, Stefan; Abdeladhim, Mohamed Arbi; Diallo, Mori; Dickens, Chris; Fournet, Samuel; Hattermann, Fred Fokko; Kabaseke, Clovis; Muhumuza, Moses; Mul, Marloes L.; Pilz, Tobias; Otto, lona M.; Walz, Ariane
    Scenarios have become a key tool for supporting sustainability research on regional and global change. In this study we evaluate four regional scenario assessments: first, to explore a number of research challenges related to sustainability science and, second, to contribute to sustainability research in the specific case studies. The four case studies used commonly applied scenario approaches that are (i) a story and simulation approach with stakeholder participation in the Oum Zessar watershed, Tunisia, (ii) a participatory scenario exploration in the Rwenzori region, Uganda, (iii) a model-based prepolicy study in the Inner Niger Delta, Mali, and (iv) a model coupling-based scenario analysis in upper Thukela basin, South Africa. The scenario assessments are evaluated against a set of known challenges in sustainability science, with each challenge represented by two indicators, complemented by a survey carried out on the perception of the scenario assessments within the case study regions. The results show that all types of scenario assessments address many sustainability challenges, but that the more complex ones based on story and simulation and model coupling are the most comprehensive. The study highlights the need to investigate abrupt system changes as well as governmental and political factors as important sources of uncertainty. For an in-depth analysis of these issues, the use of qualitative approaches and an active engagement of local stakeholders are suggested. Studying ecological thresholds for the regional scale is recommended to support research on regional sustainability. The evaluation of the scenario processes and outcomes by local researchers indicates the most transparent scenario assessments as the most useful. Focused, straightforward, yet iterative scenario assessments can be very relevant by contributing information to selected sustainability problems.
  • Item
    How to Tailor My Process‐Based Hydrological Model? Dynamic Identifiability Analysis of Flexible Model Structures
    ([New York] : Wiley, 2020) Pilz, Tobias; Francke, Till; Baroni, Gabriele; Bronstert, Axel
    In the field of hydrological modeling, many alternative representations of natural processes exist. Choosing specific process formulations when building a hydrological model is therefore associated with a high degree of ambiguity and subjectivity. In addition, the numerical integration of the underlying differential equations and parametrization of model structures influence model performance. Identifiability analysis may provide guidance by constraining the a priori range of alternatives based on observations. In this work, a flexible simulation environment is used to build an ensemble of semidistributed, process-based hydrological model configurations with alternative process representations, numerical integration schemes, and model parametrizations in an integrated manner. The flexible simulation environment is coupled with an approach for dynamic identifiability analysis. The objective is to investigate the applicability of the framework to identify the most adequate model. While an optimal model configuration could not be clearly distinguished, interesting results were obtained when relating model identifiability with hydro-meteorological boundary conditions. For instance, we tested the Penman-Monteith and Shuttleworth & Wallace evapotranspiration models and found that the former performs better under wet and the latter under dry conditions. Parametrization of model structures plays a dominant role as it can compensate for inadequate process representations and poor numerical solvers. Therefore, it was found that numerical solvers of high order of accuracy do often, though not necessarily, lead to better model performance. The proposed coupled framework proved to be a straightforward diagnostic tool for model building and hypotheses testing and shows potential for more in-depth analysis of process implementations and catchment functioning.