Search Results

Now showing 1 - 2 of 2
  • Item
    Articulating the effect of food systems innovation on the Sustainable Development Goals
    (Amsterdam : Elsevier, 2021) Herrero, Mario; Thornton, Philip K.; Mason-D'Croz, Daniel; Palmer, Jeda; Bodirsky, Benjamin L.; Pradhan, Prajal; Barrett, Christopher B.; Benton, Tim G.; Hall, Andrew; Pikaar, Ilje; Bogard, Jessica R.; Bonnett, Graham D.; Bryan, Brett A.; Campbell, Bruce M.; Christensen, Svend; Clark, Michael; Fanzo, Jessica; Godde, Cecile M.; Jarvis, Andy; Loboguerrero, Ana Maria; Mathys, Alexander; McIntyre, C. Lynne; Naylor, Rosamond L.; Nelson, Rebecca; Obersteiner, Michael; Parodi, Alejandro; Popp, Alexander; Ricketts, Katie; Smith, Pete; Valin, Hugo; Vermeulen, Sonja J.; Vervoort, Joost; van Wijk, Mark; van Zanten, Hannah HE; West, Paul C.; Wood, Stephen A.; Rockström, Johan
    Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level.
  • Item
    The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Martinelli, Eleonora; Stenstad, Antonia; Pradhan, Prajal; Gabrysch, Sabine; Mishra, Abhijeet; Weindl, Isabelle; Le Mouël, Chantal; Rolinski, Susanne; Baumstark, Lavinia; Wang, Xiaoxi; Waid, Jillian L.; Lotze-Campen, Hermann; Popp, Alexander
    The nutrition transition transforms food systems globally and shapes public health and environmental change. Here we provide a global forward-looking assessment of a continued nutrition transition and its interlinked symptoms in respect to food consumption. These symptoms range from underweight and unbalanced diets to obesity, food waste and environmental pressure. We find that by 2050, 45% (39–52%) of the world population will be overweight and 16% (13–20%) obese, compared to 29% and 9% in 2010 respectively. The prevalence of underweight approximately halves but absolute numbers stagnate at 0.4–0.7 billion. Aligned, dietary composition shifts towards animal-source foods and empty calories, while the consumption of vegetables, fruits and nuts increases insufficiently. Population growth, ageing, increasing body mass and more wasteful consumption patterns are jointly pushing global food demand from 30 to 45 (43–47) Exajoules. Our comprehensive open dataset and model provides the interfaces necessary for integrated studies of global health, food systems, and environmental change. Achieving zero hunger, healthy diets, and a food demand compatible with environmental boundaries necessitates a coordinated redirection of the nutrition transition. Reducing household waste, animal-source foods, and overweight could synergistically address multiple symptoms at once, while eliminating underweight would not substantially increase food demand.