Search Results

Now showing 1 - 10 of 44
  • Item
    Bioenergy for climate change mitigation: Scale and sustainability
    (Oxford : Wiley-Blackwell, 2021) Calvin, Katherine; Cowie, Annette; Berndes, Göran; Arneth, Almut; Cherubini, Francesco; Portugal‐Pereira, Joana; Grassi, Giacomo; House, Jo; Johnson, Francis X.; Popp, Alexander; Rounsevell, Mark; Slade, Raphael; Smith, Pete
    Many global climate change mitigation pathways presented in IPCC assessment reports rely heavily on the deployment of bioenergy, often used in conjunction with carbon capture and storage. We review the literature on bioenergy use for climate change mitigation, including studies that use top-down integrated assessment models or bottom-up modelling, and studies that do not rely on modelling. We summarize the state of knowledge concerning potential co-benefits and adverse side effects of bioenergy systems and discuss limitations of modelling studies used to analyse consequences of bioenergy expansion. The implications of bioenergy supply on mitigation and other sustainability criteria are context dependent and influenced by feedstock, management regime, climatic region, scale of deployment and how bioenergy alters energy systems and land use. Depending on previous land use, widespread deployment of monoculture plantations may contribute to mitigation but can cause negative impacts across a range of other sustainability criteria. Strategic integration of new biomass supply systems into existing agriculture and forest landscapes may result in less mitigation but can contribute positively to other sustainability objectives. There is considerable variation in evaluations of how sustainability challenges evolve as the scale of bioenergy deployment increases, due to limitations of existing models, and uncertainty over the future context with respect to the many variables that influence alternative uses of biomass and land. Integrative policies, coordinated institutions and improved governance mechanisms to enhance co-benefits and minimize adverse side effects can reduce the risks of large-scale deployment of bioenergy. Further, conservation and efficiency measures for energy, land and biomass can support greater flexibility in achieving climate change mitigation and adaptation.
  • Item
    Estimating global land system impacts of timber plantations using MAgPIE 4.3.5
    (Katlenburg-Lindau : Copernicus, 2021) Mishra, Abhijeet; Humpenoeder, Florian; Dietrich, Jan Philipp; Bodirsky, Benjamin Leon; Sohngen, Brent; Reyer, Christopher P. O.; Lotze-Campen, Hermann; Popp, Alexander
    Out of 1150 Mha (million hectares) of forest designated primarily for production purposes in 2020, plantations accounted for 11 % (131 Mha) of this area and fulfilled more than 33 % of the global industrial roundwood demand. However, adding additional timber plantations to meet increasing timber demand intensifies competition for scarce land resources between different land uses such as food, feed, livestock and timber production. Despite the significance of plantations with respect to roundwood production, their importance in meeting the long-term timber demand and the implications of plantation expansion for overall land-use dynamics have not been studied in detail, in particular regarding the competition for land between agriculture and forestry in existing land-use models. This paper describes the extension of the modular, open-source land system Model of Agricultural Production and its Impact on the Environment (MAgPIE) using a detailed representation of forest land, timber production and timber demand dynamics. These extensions allow for a better understanding of the land-use dynamics (including competition for land) and the associated land-use change emissions of timber production. We show that the spatial cropland patterns differ when timber production is accounted for, indicating that timber plantations compete with cropland for the same scarce land resources. When plantations are established on cropland, it causes cropland expansion and deforestation elsewhere. Using the exogenous extrapolation of historical roundwood production from plantations, future timber demand and plantation rotation lengths, we model the future spatial expansion of forest plantations. As a result of increasing timber demand, we show a 177 % increase in plantation area by the end of the century (+171 Mha in 1995–2100). We also observe (in our model results) that the increasing demand for timber amplifies the scarcity of land, which is indicated by shifting agricultural land-use patterns and increasing yields from cropland compared with a case without forestry. Through the inclusion of new forest plantation and natural forest dynamics, our estimates of land-related CO2 emissions better match with observed data, in particular the gross land-use change emissions and carbon uptake (via regrowth), reflecting higher deforestation with the expansion of managed land and timber production as well as higher regrowth in natural forests and plantations.
  • Item
    Articulating the effect of food systems innovation on the Sustainable Development Goals
    (Amsterdam : Elsevier, 2021) Herrero, Mario; Thornton, Philip K.; Mason-D'Croz, Daniel; Palmer, Jeda; Bodirsky, Benjamin L.; Pradhan, Prajal; Barrett, Christopher B.; Benton, Tim G.; Hall, Andrew; Pikaar, Ilje; Bogard, Jessica R.; Bonnett, Graham D.; Bryan, Brett A.; Campbell, Bruce M.; Christensen, Svend; Clark, Michael; Fanzo, Jessica; Godde, Cecile M.; Jarvis, Andy; Loboguerrero, Ana Maria; Mathys, Alexander; McIntyre, C. Lynne; Naylor, Rosamond L.; Nelson, Rebecca; Obersteiner, Michael; Parodi, Alejandro; Popp, Alexander; Ricketts, Katie; Smith, Pete; Valin, Hugo; Vermeulen, Sonja J.; Vervoort, Joost; van Wijk, Mark; van Zanten, Hannah HE; West, Paul C.; Wood, Stephen A.; Rockström, Johan
    Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level.
  • Item
    Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)
    (München : European Geopyhsical Union, 2017) Frieler, Katja; Lange, Stefan; Piontek, Franziska; Reyer, Christopher P.O.; Schewe, Jacob; Warszawski, Lila; Zhao, Fang; Chini, Louise; Denvil, Sebastien; Emanuel, Kerry; Geiger, Tobias; Halladay, Kate; Hurtt, George; Mengel, Matthias; Murakami, Daisuke; Ostberg, Sebastian; Popp, Alexander; Riva, Riccardo; Stevanovic, Miodrag; Suzuki, Tatsuo; Volkholz, Jan; Burke, Eleanor; Ciais, Philippe; Ebi, Kristie; Eddy, Tyler D.; Elliott, Joshua; Galbraith, Eric; Gosling, Simon N.; Hattermann, Fred; Hickler, Thomas; Hinkel, Jochen; Hof, Christian; Huber, Veronika; Jägermeyr, Jonas; Krysanova, Valentina; Marcé, Rafael; Müller Schmied, Hannes; Mouratiadou, Ioanna; Pierson, Don; Tittensor, Derek P.; Vautard, Robert; van Vliet, Michelle; Biber, Matthias F.; Betts, Richard A.; Bodirsky, Benjamin Leon; Deryng, Delphine; Frolking, Steve; Jones, Chris D.; Lotze, Heike K.; Lotze-Campen, Hermann; Sahajpal, Ritvik; Thonicke, Kirsten; Tian, Hanqin; Yamagata, Yoshiki
    In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5°C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).
  • Item
    Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies
    ([London] : Nature Publishing Group UK, 2019) Luderer, Gunnar; Pehl, Michaja; Arvesen, Anders; Gibon, Thomas; Bodirsky, Benjamin L.; de Boer, Harmen Sytze; Fricko, Oliver; Hejazi, Mohamad; Humpenöder, Florian; Iyer, Gokul; Mima, Silvana; Mouratiadou, Ioanna; Pietzcker, Robert C.; Popp, Alexander; van den Berg, Maarten; van Vuuren, Detlef; Hertwich, Edgar G.
    A rapid and deep decarbonization of power supply worldwide is required to limit global warming to well below 2 °C. Beyond greenhouse gas emissions, the power sector is also responsible for numerous other environmental impacts. Here we combine scenarios from integrated assessment models with a forward-looking life-cycle assessment to explore how alternative technology choices in power sector decarbonization pathways compare in terms of non-climate environmental impacts at the system level. While all decarbonization pathways yield major environmental co-benefits, we find that the scale of co-benefits as well as profiles of adverse side-effects depend strongly on technology choice. Mitigation scenarios focusing on wind and solar power are more effective in reducing human health impacts compared to those with low renewable energy, while inducing a more pronounced shift away from fossil and toward mineral resource depletion. Conversely, non-climate ecosystem damages are highly uncertain but tend to increase, chiefly due to land requirements for bioenergy.
  • Item
    Combining ambitious climate policies with efforts to eradicate poverty
    ([London] : Nature Publishing Group UK, 2021) Soergel, Bjoern; Kriegler, Elmar; Bodirsky, Benjamin Leon; Bauer, Nico; Leimbach, Marian; Popp, Alexander
    Climate change threatens to undermine efforts to eradicate extreme poverty. However, climate policies could impose a financial burden on the global poor through increased energy and food prices. Here, we project poverty rates until 2050 and assess how they are influenced by mitigation policies consistent with the 1.5 °C target. A continuation of historical trends will leave 350 million people globally in extreme poverty by 2030. Without progressive redistribution, climate policies would push an additional 50 million people into poverty. However, redistributing the national carbon pricing revenues domestically as an equal-per-capita climate dividend compensates this policy side effect, even leading to a small net reduction of the global poverty headcount (−6 million). An additional international climate finance scheme enables a substantial poverty reduction globally and also in Sub-Saharan Africa. Combining national redistribution with international climate finance thus provides an important entry point to climate policy in developing countries.
  • Item
    The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview
    (Amsterdam : Elsevier, 2016) Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar; Edmonds, Jae; O’Neill, Brian C.; Fujimori, Shinichiro; Bauer, Nico; Calvin, Katherine; Dellink, Rob; Fricko, Oliver; Lutz, Wolfgang; Popp, Alexander; Crespo Cuaresma, Jesus; KC, Samir; Leimbach, Marian; Jiang, Leiwen; Kram, Tom; Rao, Shilpa; Emmerling, Johannes; Ebi, Kristie; Hasegawa, Tomoko; Havlik, Petr; Humpenöder, Florian; Aleluia Da Silva, Lara; Smith, Steve; Stehfest, Elke; Bosetti, Valentina; Eom, Jiyong; Gernaat, David; Masui, Toshihiko; Rogelj, Joeri; Strefler, Jessica; Drouet, Laurent; Krey, Volker; Luderer, Gunnar; Harmsen, Mathijs; Takahashi, Kiyoshi; Baumstark, Lavinia; Doelman, Jonathan C.; Kainuma, Mikiko; Klimont, Zbigniew; Marangoni, Giacomo; Lotze-Campen, Hermann; Obersteiner, Michael; Tabeau, Andrzej; Tavoni, Massimo
    This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
  • Item
    The impact of high-end climate change on agricultural welfare
    (Washington, DC : American Association for the Advancement of Science, 2016) Stevanović, Miodrag; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Müller, Christoph; Bonsch, Markus; Schmitz, Christoph; Bodirsky, Benjamin Leon; Humpenöder, Florian; Weindl, Isabelle
    Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.
  • Item
    Key determinants of global land-use projections
    ([London] : Nature Publishing Group UK, 2019) Stehfest, Elke; van Zeist, Willem-Jan; Valin, Hugo; Havlik, Petr; Popp, Alexander; Kyle, Page; Tabeau, Andrzej; Mason-D’Croz, Daniel; Hasegawa, Tomoko; Bodirsky, Benjamin L.; Calvin, Katherine; Doelman, Jonathan C.; Fujimori, Shinichiro; Humpenöder, Florian; Lotze-Campen, Hermann; van Meijl, Hans; Wiebe, Keith
    Land use is at the core of various sustainable development goals. Long-term climate foresight studies have structured their recent analyses around five socio-economic pathways (SSPs), with consistent storylines of future macroeconomic and societal developments; however, model quantification of these scenarios shows substantial heterogeneity in land-use projections. Here we build on a recently developed sensitivity approach to identify how future land use depends on six distinct socio-economic drivers (population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade) and their interactions. Spread across models arises mostly from diverging sensitivities to long-term drivers and from various representations of land-use regulation and trade, calling for reconciliation efforts and more empirical research. Most influential determinants for future cropland and pasture extent are population and agricultural efficiency. Furthermore, land-use regulation and consumption changes can play a key role in reducing both land use and food-security risks, and need to be central elements in sustainable development strategies.
  • Item
    Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?
    (Basel : MDPI, 2019) Johnson, Nils; Burek, Peter; Byers, Edward; Falchetta, Giacomo; Flörke, Martina; Fujimori, Shinichiro; Havlik, Petr; Hejazi, Mohamad; Hunt, Julian; Krey, Volker; Langan, Simon; Nakicenovic, Nebojsa; Palazzo, Amanda; Popp, Alexander; Riahi, Keywan; van Dijk, Michiel; van Vliet, Michelle; van Vuuren, Detlef; Wada, Yoshihide; Wiberg, David; Willaarts, Barbara; Zimm, Caroline; Parkinson, Simon
    Increasing human demands for water, energy, food and materials, are expected to accentuate resource supply challenges over the coming decades. Experience suggests that long-term strategies for a single sector could yield both trade-offs and synergies for other sectors. Thus, long-term transition pathways for linked resource systems should be informed using nexus approaches. Global integrated assessment models can represent the synergies and trade-offs inherent in the exploitation of water, energy and land (WEL) resources, including the impacts of international trade and climate policies. In this study, we review the current state-of-the-science in global integrated assessment modeling with an emphasis on how models have incorporated integrated WEL solutions. A large-scale assessment of the relevant literature was performed using online databases and structured keyword search queries. The results point to the following main opportunities for future research and model development: (1) improving the temporal and spatial resolution of economic models for the energy and water sectors; (2) balancing energy and land requirements across sectors; (3) integrated representation of the role of distribution infrastructure in alleviating resource challenges; (4) modeling of solution impacts on downstream environmental quality; (5) improved representation of the implementation challenges stemming from regional financial and institutional capacity; (6) enabling dynamic multi-sectoral vulnerability and adaptation needs assessment; and (7) the development of fully-coupled assessment frameworks based on consistent, scalable, and regionally-transferable platforms. Improved database management and computational power are needed to address many of these modeling challenges at a global-scale.