Search Results

Now showing 1 - 10 of 15
  • Item
    Rapid Colorimetric Detection of Pseudomonas aeruginosa in Clinical Isolates Using a Magnetic Nanoparticle Biosensor
    (Washington, DC : ACS Publications, 2019) Alhogail, Sahar; Suaifan, Ghadeer A.R.Y; Bikker, Floris J.; Kaman, Wendy E.; Weber, Karina; Cialla-May, Dana; Popp, Jürgen; Zourob, Mohammed M.
    A rapid, sensitive, and specific colorimetric biosensor based on the use of magnetic nanoparticles (MNPs) was designed for the detection of Pseudomonas aeruginosa in clinical samples. The biosensing platform was based on the measurement of P. aeruginosa proteolytic activity using a specific protease substrate. At the N-terminus, this substrate was covalently bound to MNPs and was linked to a gold sensor surface via cystine at the C-terminus of the substrates. The golden sensor appears black to naked eyes because of the coverage of the MNPs. However, upon proteolysis, the cleaved peptide–MNP moieties will be attracted by an external magnet, revealing the golden color of the sensor surface, which can be observed by the naked eye. In vitro, the biosensor was able to detect specifically and quantitatively the presence of P. aeruginosa with a detection limit of 102 cfu/mL in less than 1 min. The colorimetric biosensor was used to test its ability to detect in situ P. aeruginosa in clinical isolates from patients. This biochip is anticipated to be useful as a rapid point-of-care device for the diagnosis of P. aeruginosa-related infections.
  • Item
    Towards on-site testing of Phytophthora species
    (Cambridge : RSC Publ., 2014) Schwenkbier, Lydia; Pollok, Sibyll; König, Stephan; Urban, Matthias; Werres, Sabine; Cialla-May, Dana; Weber, Karina; Popp, Jürgen
    Rapid detection and accurate identification of plant pathogens in the field is an ongoing challenge. In this study, we report for the first time on the development of a helicase-dependent isothermal amplification (HDA) in combination with on-chip hybridization for the detection of selected Phytophthora species. The HDA approach allows efficient amplification of the yeast GTP-binding protein (Ypt1) target gene region at one constant temperature in a miniaturized heating device. The assay's specificity was determined by on-chip DNA hybridization and subsequent silver nanoparticle deposition. The silver deposits serve as stable endpoint signals that enable the visual as well as the electrical readout. Our promising results point to the direction of a near future on-site application of the combined techniques for a reliable detection of Phytophthora species.
  • Item
    Direct raman spectroscopic measurements of biological nitrogen fixation under natural conditions: An analytical approach for studying nitrogenase activity
    (Columbus, Ohio : American Chemical Society, 2016) Jochum, Tobias; Fastnacht, Agnes; Trumbore, Susan E.; Popp, Jürgen; Frosch, Torsten
    Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)-1 h-1 of a Medicago sativa-Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere. (Figure Presented).
  • Item
    A Machine Learning-Based Raman Spectroscopic Assay for the Identification of Burkholderia mallei and Related Species
    (Basel : MDPI, 2019) Silge, Anja; Moawad, Amira A.; Bocklitz, Thomas; Fischer, Katja; Rösch, Petra; Roesler, Uwe; Elschner, Mandy C.; Popp, Jürgen; Neubauer, Heinrich
    Burkholderia (B.) mallei, the causative agent of glanders, and B. pseudomallei, the causative agent of melioidosis in humans and animals, are genetically closely related. The high infectious potential of both organisms, their serological cross-reactivity, and similar clinical symptoms in human and animals make the differentiation from each other and other Burkholderia species challenging. The increased resistance against many antibiotics implies the need for fast and robust identification methods. The use of Raman microspectroscopy in microbial diagnostic has the potential for rapid and reliable identification. Single bacterial cells are directly probed and a broad range of phenotypic information is recorded, which is subsequently analyzed by machine learning methods. Burkholderia were handled under biosafety level 1 (BSL 1) conditions after heat inactivation. The clusters of the spectral phenotypes and the diagnostic relevance of the Burkholderia spp. were considered for an advanced hierarchical machine learning approach. The strain panel for training involved 12 B. mallei, 13 B. pseudomallei and 11 other Burkholderia spp. type strains. The combination of top- and sub-level classifier identified the mallei-complex with high sensitivities (>95%). The reliable identification of unknown B. mallei and B. pseudomallei strains highlighted the robustness of the machine learning-based Raman spectroscopic assay. © 2019 by the authors
  • Item
    Linear and non-linear optical imaging of cancer cells with silicon nanoparticles
    (Basel : Molecular Diversity Preservation International (MDPI), 2016) Tolstik, Elen; Osminkina, Liubov A.; Akimov, Denis; Gongalsky, Maksim B.; Kudryavtsev, Andrew A.; Timoshenko, Victor Yu.; Heintzmann, Rainer; Sivakov, Vladimir; Popp, Jürgen
    New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours.
  • Item
    Fusion of MALDI Spectrometric Imaging and Raman Spectroscopic Data for the Analysis of Biological Samples
    (Lausanne : Frontiers Media, 2018) Ryabchykov, Oleg; Popp, Jürgen; Bocklitz, Thomas W.
    Despite of a large number of imaging techniques for the characterization of biological samples, no universal one has been reported yet. In this work, a data fusion approach was investigated for combining Raman spectroscopic data with matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis of biological samples because Raman and MALDI information can be complementary to each other. While MALDI spectrometry yields detailed information regarding the lipid content, Raman spectroscopy provides valuable information about the overall chemical composition of the sample. The combination of Raman spectroscopic and MALDI spectrometric imaging data helps distinguishing different regions within the sample with a higher precision than would be possible by using either technique. We demonstrate that a data weighting step within the data fusion is necessary to reveal additional spectral features. The selected weighting approach was evaluated by examining the proportions of variance within the data explained by the first principal components of a principal component analysis (PCA) and visualizing the PCA results for each data type and combined data. In summary, the presented data fusion approach provides a concrete guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging data for biological analysis.
  • Item
    Beer's Law-Why Integrated Absorbance Depends Linearly on Concentration
    (Weinheim : Wiley-VCH Verl., 2019) Mayerhöfer, Thomas G.; Pipa, Andrei V.; Popp, Jürgen
    As derived by Max Planck in 1903 from dispersion theory, Beer's law has a fundamental limitation. The concentration dependence of absorbance can deviate from linearity, even in the absence of any interactions or instrumental nonlinearities. Integrated absorbance, not peak absorbance, depends linearly on concentration. The numerical integration of the absorbance leads to maximum deviations from linearity of less than 0.1 %. This deviation is a consequence of a sum rule that was derived from the Kramers-Kronig relations at a time when the fundamental limitation of Beer's law was no longer mentioned in the literature. This sum rule also links concentration to (classical) oscillator strengths and thereby enables the use of dispersion analysis to determine the concentration directly from transmittance and reflectance measurements. Thus, concentration analysis of complex samples, such as layered and/or anisotropic materials, in which Beer's law cannot be applied, can be achieved using dispersion analysis. ©2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017) Hassoun, Mohamed; Schie, Iwan W.; Tolstik, Tatiana; Stanca, Sarmiza E.; Krafft, Christoph; Popp, Jürgen
    The throughput of spontaneous Raman spectroscopy for cell identification applications is limited to the range of one cell per second because of the relatively low sensitivity. Surface-enhanced Raman scattering (SERS) is a widespread way to amplify the intensity of Raman signals by several orders of magnitude and, consequently, to improve the sensitivity and throughput. SERS protocols using immuno-functionalized nanoparticles turned out to be challenging for cell identification because they require complex preparation procedures. Here, a new SERS strategy is presented for cell classification using non-functionalized silver nanoparticles and potassium chloride to induce aggregation. To demonstrate the principle, cell lysates were prepared by ultrasonication that disrupts the cell membrane and enables interaction of released cellular biomolecules to nanoparticles. This approach was applied to distinguish four cell lines – Capan-1, HepG2, Sk-Hep1 and MCF-7 – using SERS at 785 nm excitation. Six independent batches were prepared per cell line to check the reproducibility. Principal component analysis was applied for data reduction and assessment of spectral variations that were assigned to proteins, nucleotides and carbohydrates. Four principal components were selected as input for classification models based on support vector machines. Leave-three-batches-out cross validation recognized four cell lines with sensitivities, specificities and accuracies above 96%. We conclude that this reproducible and specific SERS approach offers prospects for cell identification using easily preparable silver nanoparticles.
  • Item
    Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia
    (Cambridge : Soc., 2016) Yan, Di; Domes, Christian; Domes, Robert; Frosch, Timea; Popp, Jürgen; Pletz, Mathias W.; Frosch, Torsten
    Fiber enhanced resonance Raman spectroscopy (FERS) is introduced for chemically selective and ultrasensitive analysis of the biomolecules hematin, hemoglobin, biliverdin, and bilirubin. The abilities for analyzing whole intact, oxygenated erythrocytes are proven, demonstrating the potential for the diagnosis of red blood cell related diseases, such as different types of anemia and hemolytic disorders. The optical fiber enables an efficient light-guiding within a miniaturized sample volume of only a few micro-liters and provides a tremendously improved analytical sensitivity (LODs of 0.5 μM for bilirubin and 0.13 μM for biliverdin with proposed improvements down to the pico-molar range). FERS is a less invasive method than the standard ones and could be a new analytical method for monitoring neonatal jaundice, allowing a precise control of the unconjugated serum bilirubin levels, and therefore, providing a better prognosis for newborns. The potential for sensing very low concentrations of the bile pigments may also open up new opportunities for cancer research. The abilities of FERS as a diagnostic tool are explored for the elucidation of jaundice with different etiologies including the rare, not yet well understood diseases manifested in green jaundice. This is demonstrated by quantifying clinically relevant concentrations of bilirubin and biliverdin simultaneously in the micro-molar range: for the case of hyperbilirubinemia due to malignancy, infectious hepatitis, cirrhosis or stenosis of the common bile duct (1 μM biliverdin together with 50 μM bilirubin) and for hyperbiliverdinemia (25 μM biliverdin and 75 μM bilirubin). FERS has high potential as an ultrasensitive analytical technique for a wide range of biomolecules and in various life-science applications.
  • Item
    Toward food analytics: fast estimation of lycopene and β-carotene content in tomatoes based on surface enhanced Raman spectroscopy (SERS)
    (Cambridge : Soc., 2016) Radu, Andreea Ioana; Ryabchykov, Oleg; Bocklitz, Thomas Wilhelm; Huebner, Uwe; Weber, Karina; Cialla-May, Dana; Popp, Jürgen
    Carotenoids are molecules that play important roles in both plant development and in the well-being of mammalian organisms. Therefore, various studies have been performed to characterize carotenoids’ properties, distribution in nature and their health benefits upon ingestion. Nevertheless, there is a gap regarding a fast detection of them at the plant phase. Within this contribution we report the results obtained regarding the application of surface enhanced Raman spectroscopy (SERS) toward the differentiation of two carotenoid molecules (namely, lycopene and β-carotene) in tomato samples. To this end, an e-beam lithography (EBL) SERS-active substrate and a 488 nm excitation source were employed, and a relevant simulated matrix was prepared (by mixing the two carotenoids in defined percentages) and measured. Next, carotenoids were extracted from tomato plants and measured as well. Finally, a combination of principal component analysis and partial least squares regression (PCA-PLSR) was applied to process the data, and the obtained results were compared with HPLC measurements of the same extracts. A good agreement was obtained between the HPLC and the SERS results for most of the tomato samples.