Search Results

Now showing 1 - 10 of 18
  • Item
    Combining Battery‐Type and Pseudocapacitive Charge Storage in Ag/Ti3C2Tx MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport
    (Hoboken, NJ : Wiley, 2020) Liang, Mingxing; Wang, Lei; Presser, Volker; Dai, Xiaohu; Yu, Fei; Ma, Jie
    The recent advances in chloride‐ion capturing electrodes for capacitive deionization (CDI) are limited by the capacity, rate, and stability of desalination. This work introduces Ti3C2Tx/Ag synthesized via a facile oxidation‐reduction method and then uses it as an anode for chloride‐ion capture in CDI. Silver nanoparticles are formed successfully and uniformly distributed with the layered‐structure of Ti3C2Tx. All Ti3C2Tx/Ag samples are hydrophilic, which is beneficial for water desalination. Ti3C2Tx/Ag samples with a low charge transfer resistance exhibit both pseudocapacitive and battery behaviors. Herein, the Ti3C2Tx/Ag electrode with a reaction time of 3 h exhibits excellent desalination performance with a capacity of 135 mg Cl− g−1 at 20 mA g−1 in a 10 × 10−3 m NaCl solution. Furthermore, low energy consumption of 0.42 kWh kg−1 Cl− and a desalination rate of 1.5 mg Cl− g−1 min−1 at 50 mA g−1 is achieved. The Ti3C2Tx/Ag system exhibits fast rate capability, high desalination capacity, low energy consumption, and excellent cyclability, which can be ascribed to the synergistic effect between the battery and pseudocapacitive behaviors of the Ti3C2Tx/Ag hybrid material. This work provides fundamental insight into the coupling of battery and pseudocapacitive behaviors during Cl− capture for electrochemical desalination.
  • Item
    In-situ nanodiamond to carbon onion transformation in metal matrix composites
    (Amsterdam : Elsevier, 2018) Suarez, Sebastian; Reinert, Leander; Zeiger, Marco; Miska, Patrice; Grandthyll, Samuel; Müller, Frank; Presser, Volker; Mücklich, Frank
    In the present study, nickel matrix composites reinforced with a fine distribution of nanodiamonds (6.5 vol%) as reinforcement phase are annealed in vacuum at different temperatures ranging from 750 °C to 1300 °C. This is carried out to evaluate the in-situ transformation of nanodiamonds to carbon onions within a previously densified composite. The resulting materials are thoroughly analyzed by complementary analytical methods, including Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The proposed in-situ transformation method presents two main benefits. On one hand, since the particle distribution of a nanodiamond-reinforced composite is significantly more homogenous than in case of the carbon onions, it is expected that the transformed particles will preserve the initial distribution features of nanodiamonds. On the other hand, the proposed process allows for the tuning of the sp3/sp2 carbon ratio by applying a single straightforward post-processing step.
  • Item
    Vacuum or flowing argon: What is the best synthesis atmosphere for nanodiamond-derived carbon onions for supercapacitor electrodes?
    (Amsterdam : Elsevier, 2015) Zeiger, Marco; Jäckel, Nicolas; Weingarth, Daniel; Presser, Volker
    We present a comprehensive study on the influence of the synthesis atmosphere on the structure and properties of nanodiamond-derived carbon onions. Carbon onions were synthesized at 1300 and 1700 °C in high vacuum or argon flow, using rapid dynamic heating and cooling. High vacuum annealing yielded carbon onions with nearly perfect spherical shape. An increase in surface area was caused by a decrease in particle density when transitioning from sp3 to sp2 hybridization and negligible amounts of disordered carbon were produced. In contrast, carbon onions from annealing nanodiamonds in flowing argon are highly interconnected by few-layer graphene nanoribbons. The presence of the latter improves the electrical conductivity, which is reflected by an enhanced power handling ability of supercapacitor electrodes operated in an organic electrolyte (1 M tetraethylammonium tetrafluoroborate in acetonitrile). Carbon onions synthesized in argon flow at 1700 °C show a specific capacitance of 20 F/g at 20 A/g current density and 2.7 V cell voltage which is an improvement of more than 40% compared to vacuum annealing. The same effect was measured for a synthesis temperature of 1300 °C, with a 140% higher capacitance at 20 A/g for argon flow compared to vacuum annealing.
  • Item
    Quinone-decorated onion-like carbon/carbon fiber hybrid electrodes for high-rate supercapacitor applications
    (Hoboken, NJ : Wiley, 2015) Zeiger, Marco; Weingarth, Daniel; Presser, Volker
    The energy performance of carbon onions can be significantly enhanced by introducing pseudocapacitive materials, but this is commonly at the cost of power handling. In this study, a novel synergistic electrode preparation method was developed by using carbon-fiber substrates loaded with quinone-decorated carbon onions. The electrodes are free standing, binder free, extremely conductive, and the interfiber space filling overcomes the severely low apparent density commonly found for electrospun fibers. Electrochemical measurements were performed in organic and aqueous electrolytes. For both systems, a high electrochemical stability after 10 000 cycles was measured, as well as a long-term voltage floating test for the organic electrolyte. The capacitance in 1 M H2SO4 was 288 F g^−1 for the highest loading of quinones, which is similar to literature values, but with a very high power handling, showing more than 100 F g^−1 at a scan rate of 2 Vs^−1.
  • Item
    Electrospinning and electrospraying of silicon oxycarbide-derived nanoporous carbon for supercapacitor electrodes
    (Amsterdam : Elsevier, 2016) Tolosa, Aura; Krüner, Benjamin; Jäckel, Nicolas; Aslan, Mesut; Vakifahmetoglu, Cekdar; Presser, Volker
    In this study, carbide-derived carbon fibers from silicon oxycarbide precursor were synthesized by electrospinning of a commercially available silicone resin without adding a carrier polymer for the electrospinning process. The electrospun fibers were pyrolyzed yielding SiOC. Modifying the synthesis procedure, we were able to obtain electrosprayed SiOC beads instead of fibers. After chlorine treatment, nanoporous carbon with a specific surface area of up to 2394 m2·g-1 was obtained (3089 m2·g-1 BET). Electrochemical characterization of the SiOC-CDC either as free-standing fiber mat electrodes or polymer-bound bead films was performed in 1 M tetraethylammonium tetrafluoroborate in acetonitrile (TEA-BF4 in ACN). The electrospun fibers presented a high gravimetric capacitance of 135 F·g-1 at 10 mV·s-1 and a very high power handling, maintaining 63 % of the capacitance at 100 A·g-1. Comparative data of SiOC-CDC beads and fibers show enhanced power handling for fiber mats only when the fiber network is intact, that is, a lowered performance was observed when using crushed mats that employ polymer binder.
  • Item
    Interlaboratory study assessing the analysis of supercapacitor electrochemistry data
    (New York, NY [u.a.] : Elsevier, 2023) Gittins, Jamie W.; Chen, Yuan; Arnold, Stefanie; Augustyn, Veronica; Balducci, Andrea; Brousse, Thierry; Frackowiak, Elzbieta; Gómez-Romero, Pedro; Kanwade, Archana; Köps, Lukas; Jha, Plawan Kumar; Lyu, Dongxun; Meo, Michele; Pandey, Deepak; Pang, Le; Presser, Volker; Rapisarda, Mario; Rueda-García, Daniel; Saeed, Saeed; Shirage, Parasharam M.; Ślesiński, Adam; Soavi, Francesca; Thomas, Jayan; Titirici, Maria-Magdalena; Wang, Hongxia; Xu, Zhen; Yu, Aiping; Zhang, Maiwen; Forse, Alexander C.
    Supercapacitors are fast-charging energy storage devices of great importance for developing robust and climate-friendly energy infrastructures for the future. Research in this field has seen rapid growth in recent years, therefore consistent reporting practices must be implemented to enable reliable comparison of device performance. Although several studies have highlighted the best practices for analysing and reporting data from such energy storage devices, there is yet to be an empirical study investigating whether researchers in the field are correctly implementing these recommendations, and which assesses the variation in reporting between different laboratories. Here we address this deficit by carrying out the first interlaboratory study of the analysis of supercapacitor electrochemistry data. We find that the use of incorrect formulae and researchers having different interpretations of key terminologies are major causes of variability in data reporting. Furthermore we highlight the more significant variation in reported results for electrochemical profiles showing non-ideal capacitive behaviour. From the insights gained through this study, we make additional recommendations to the community to help ensure consistent reporting of performance metrics moving forward.
  • Item
    Review: Carbon onions for electrochemical energy storage
    (Cambridge : Royal Society of Chemistry, 2016) Zeiger, Marco; Jäckel, Nicolas; Mochalin, Vadym N.; Presser, Volker
    Carbon onions are a relatively new member of the carbon nanomaterials family. They consist of multiple concentric fullerene-like carbon shells which are highly defective and disordered. Due to their small size of typically below 10 nm, the large external surface area, and high conductivity they are used for supercapacitor applications. As electrode materials, carbon onions provide fast charge/discharge rates resulting in high specific power but present comparatively low specific energy. They improve the performance of activated carbon electrodes as conductive additives and show suitable properties as substrates for redox-active materials. This review provides a critical discussion of the electrochemical properties of different types of carbon onions as electrode materials. It also compares the general advantages and disadvantages of different carbon onion synthesis methods. The physical and chemical properties of carbon onions, in particular nanodiamond-derived carbon onions, are described with emphasis on those parameters especially important for electrochemical energy storage systems, including the structure, conductivity, and porosity. Although the primary focus of current research is on electrode materials for supercapacitors, the use of carbon onions as conductive additives and for redox-active species is also discussed.
  • Item
    Persistent and reversible solid iodine electrodeposition in nanoporous carbons
    (Berlin : Springer Nature, 2020) Prehal, Christian; Fitzek, Harald; Kothleitner, Gerad; Presser, Volker; Gollas, Bernhard; Freunberger, Stefan A.; Abbas, Qamar
    Aqueous iodine based electrochemical energy storage is considered a potential candidate to improve sustainability and performance of current battery and supercapacitor technology. It harnesses the redox activity of iodide, iodine, and polyiodide species in the confined geometry of nanoporous carbon electrodes. However, current descriptions of the electrochemical reaction mechanism to interconvert these species are elusive. Here we show that electrochemical oxidation of iodide in nanoporous carbons forms persistent solid iodine deposits. Confinement slows down dissolution into triiodide and pentaiodide, responsible for otherwise significant self-discharge via shuttling. The main tools for these insights are in situ Raman spectroscopy and in situ small and wide-angle X-ray scattering (in situ SAXS/WAXS). In situ Raman confirms the reversible formation of triiodide and pentaiodide. In situ SAXS/WAXS indicates remarkable amounts of solid iodine deposited in the carbon nanopores. Combined with stochastic modeling, in situ SAXS allows quantifying the solid iodine volume fraction and visualizing the iodine structure on 3D lattice models at the sub-nanometer scale. Based on the derived mechanism, we demonstrate strategies for improved iodine pore filling capacity and prevention of self-discharge, applicable to hybrid supercapacitors and batteries.
  • Item
    Hybrid Anodes of Lithium Titanium Oxide and Carbon Onions for Lithium‐Ion and Sodium‐Ion Energy Storage
    (Hoboken, NJ : Wiley, 2020) Shim, Hwirim; Arnold, Stefanie; Budak, Öznil; Ulbricht, Maike; Srimuk, Pattarachai; Presser, Volker
    This study demonstrates the hybridization of Li4Ti5O12 (LTO) with different types of carbon onions synthesized from nanodiamonds. The carbon onions mixed with a Li4Ti5Ox precursor for sol–gel synthesis. These hybrid materials are tested as anodes for both lithium‐ion battery (LIB) and sodium‐ion battery (SIB). Electrochemical characterization for LIB application is carried out using 1 m LiPF6 in a 1:1 (by volume) ethylene carbonate and dimethyl carbonate as the electrolyte. For lithium‐ion intercalation, LTO hybridized with carbon onions from the inert‐gas route achieves an excellent electrochemical performance of 188 mAh g−1 at 10 mA g−1, which maintains 100 mAh g−1 at 1 A g−1 and has a cycling stability of 96% of initial capacity after 400 cycles, thereby outperforming both neat LTO and LTO with onions obtained via vacuum treatment. The performance of the best‐performing hybrid material (LTO with carbon onions from argon annealing) in an SIB is tested, using 1 m NaClO4 in ethylene/dimethyl/fluoroethylene carbonate (19:19:2 by mass) as the electrolyte. A maximum capacity of 102 mAh g−1 for the SIB system is obtained, with a capacity retention of 96% after 500 cycles.
  • Item
    Reduced Faradaic Contributions and Fast Charging of Nanoporous Carbon Electrodes in a Concentrated Sodium Nitrate Aqueous Electrolyte for Supercapacitors
    (Weinheim [u.a.] : Wiley-VCH, 2019) Abbas, Qamar; Gollas, Bernhard; Presser, Volker
    The Faradaic processes related to electrochemical water reduction at the nanoporous carbon electrode under negative polarization are reduced when the concentration of aqueous sodium nitrate (NaNO3) is increased or the temperature is decreased. This effect enhances the relative contribution of ion electrosorption to the total charge storage process. Hydrogen chemisorption is reduced in aqueous 8.0 m NaNO3 due to the low degree of hydration of the Na+ cation; consequently, less free water is available for redox contributions, driving the system to exhibit electrical double-layer capacitive characteristics. Hydrogen adsorption/desorption is facilitated in 1.0 m NaNO3 due to the high molar ratio. The excess of water shifts the local pH in carbon nanopores to neutral values, giving rise to a high overpotential for dihydrogen evolution in the latter. The dilution effect on local pH shift in 1.0 m NaNO3 can be reduced by decreasing the temperature. A symmetric activated carbon cell assembled with 8.0 m NaNO3 exhibits a high capacitance and coulombic efficiency, a larger contribution of ion electrosorption to the overall charge storage process, and a stable capacitance performance at 1.6 V. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim