Search Results

Now showing 1 - 3 of 3
  • Item
    Sea salt emission, transport and influence on size-segregated nitrate simulation: A case study in northwestern Europe by WRF-Chem
    (München : European Geopyhsical Union, 2016) Chen, Ying; Cheng, Yafang; Ma, Nan; Wolke, Ralf; Nordmann, Stephan; Schüttauf, Stephanie; Ran, Liang; Wehner, Birgit; Birmili, Wolfram; van der Gon, Hugo A.C. Denier; Mu, Qing; Barthel, Stefan; Spindler, Gerald; Stieger, Bastian; Müller, Konrad; Zheng, Guang-Jie; Pöschl, Ulrich; Su, Hang; Wiedensohler, Alfred
    Sea salt aerosol (SSA) is one of the major components of primary aerosols and has significant impact on the formation of secondary inorganic particles mass on a global scale. In this study, the fully online coupled WRF-Chem model was utilized to evaluate the SSA emission scheme and its influence on the nitrate simulation in a case study in Europe during 10–20 September 2013. Meteorological conditions near the surface, wind pattern and thermal stratification structure were well reproduced by the model. Nonetheless, the coarse-mode (PM1 − 10) particle mass concentration was substantially overestimated due to the overestimation of SSA and nitrate. Compared to filter measurements at four EMEP stations (coastal stations: Bilthoven, Kollumerwaard and Vredepeel; inland station: Melpitz), the model overestimated SSA concentrations by a factor of 8–20. We found that this overestimation was mainly caused by overestimated SSA emissions over the North Sea during 16–20 September. Over the coastal regions, SSA was injected into the continental free troposphere through an “aloft bridge” (about 500 to 1000 m above the ground), a result of the different thermodynamic properties and planetary boundary layer (PBL) structure between continental and marine regions. The injected SSA was further transported inland and mixed downward to the surface through downdraft and PBL turbulence. This process extended the influence of SSA to a larger downwind region, leading, for example, to an overestimation of SSA at Melpitz, Germany, by a factor of  ∼  20. As a result, the nitrate partitioning fraction (ratio between particulate nitrate and the summation of particulate nitrate and gas-phase nitric acid) increased by about 20 % for the coarse-mode nitrate due to the overestimation of SSA at Melpitz. However, no significant difference in the partitioning fraction for the fine-mode nitrate was found. About 140 % overestimation of the coarse-mode nitrate resulted from the influence of SSA at Melpitz. In contrast, the overestimation of SSA inhibited the nitrate particle formation in the fine mode by about 20 % because of the increased consumption of precursor by coarse-mode nitrate formation.
  • Item
    The influence of impactor size cut-off shift caused by hygroscopic growth on particulate matter loading and composition measurements
    (Oxford [u.a.] : Elsevier, 2018) Chen, Ying; Wild, Oliver; Wang, Yu; Ran, Liang; Teich, Monique; Größ, Johannes; Wang, Lina; Spindler, Gerald; Herrmann, Hartmut; van Pinxteren, Dominik; McFiggans, Gordon; Wiedensohler, Alfred
    The mass loading and composition of atmospheric particles are important in determining their climate and health effects, and are typically measured by filter sampling. However, particle sampling under ambient conditions can lead to a shift in the size cut-off threshold induced by hygroscopic growth, and the influence of this on measurement of particle loading and composition has not been adequately quantified. Here, we propose a method to assess this influence based on κ-Köhler theory. A global perspective is presented based on previously reported annual climatological values of hygroscopic properties, meteorological parameters and particle volume size distributions. Measurements at background sites in Europe may be more greatly influenced by the cut-off shift than those from other continents, with a median influence of 10–20% on the total mass of sampled particles. However, the influence is generally much smaller (<7%) at urban sites, and is negligible for dust and particles in the Arctic. Sea-salt particles experience the largest influence (median value ∼50%), resulting from their large size, high hygroscopicity and the high relative humidity (RH) in marine air-masses. We estimate a difference of ∼30% in this influence of sea-salt particle sampling between relatively dry (RH = 60%) and humid (RH = 90%) conditions. Given the variation in the cut-off shift in different locations and at different times, a consistent consideration of this influence using the approach we introduce here is critical for observational studies of the long-term and spatial distribution of particle loading and composition, and crucial for robust validation of aerosol modules in modelling studies.
  • Item
    A parameterization of the heterogeneous hydrolysis of N2O5 for mass-based aerosol models: Improvement of particulate nitrate prediction
    (Katlenburg-Lindau : EGU, 2018) Chen, Ying; Wolke, Ralf; Ran, Liang; Birmili, Wolfram; Spindler, Gerald; Schröder, Wolfram; Su, Hang; Cheng, Yafang; Tegen, Ina; Wiedensohler, Alfred
    The heterogeneous hydrolysis of N2O5 on the surface of deliquescent aerosol leads to HNO3 formation and acts as a major sink of NOx in the atmosphere during night-time. The reaction constant of this heterogeneous hydrolysis is determined by temperature (T), relative humidity (RH), aerosol particle composition, and the surface area concentration (S). However, these parameters were not comprehensively considered in the parameterization of the heterogeneous hydrolysis of N2O5 in previous mass-based 3-D aerosol modelling studies. In this investigation, we propose a sophisticated parameterization (NewN2O5) of N2O5 heterogeneous hydrolysis with respect to T, RH, aerosol particle compositions, and S based on laboratory experiments. We evaluated closure between NewN2O5 and a state-of-the-art parameterization based on a sectional aerosol treatment. The comparison showed a good linear relationship (R Combining double low line 0.91) between these two parameterizations. NewN2O5 was incorporated into a 3-D fully online coupled model, COSMO-Muscat, with the mass-based aerosol treatment. As a case study, we used the data from the HOPE Melpitz campaign (10-25 September 2013) to validate model performance. Here, we investigated the improvement of nitrate prediction over western and central Europe. The modelled particulate nitrate mass concentrations ([NO3-]) were validated by filter measurements over Germany (Neuglobsow, Schmücke, Zingst, and Melpitz). The modelled [NO3-] was significantly overestimated for this period by a factor of 5-19, with the corrected NH3 emissions (reduced by 50 %) and the original parameterization of N2O5 heterogeneous hydrolysis. The NewN2O5 significantly reduces the overestimation of [NO3-] by ∼ 35 %. Particularly, the overestimation factor was reduced to approximately 1.4 in our case study (12, 17-18 and 25 September 2013) when [NO3-] was dominated by local chemical formations. In our case, the suppression of organic coating was negligible over western and central Europe, with an influence on [NO3-] of less than 2 % on average and 20 % at the most significant moment. To obtain a significant impact of the organic coating effect, N2O5, SOA, and NH3 need to be present when RH is high and T is low. However, those conditions were rarely fulfilled simultaneously over western and central Europe. Hence, the organic coating effect on the reaction probability of N2O5 may not be as significant as expected over western and central Europe.