Search Results

Now showing 1 - 3 of 3
  • Item
    Hydrogen peroxide production of underwater nanosecond-pulsed streamer discharges with respect to pulse parameters and associated discharge characteristics
    (Bristol : IOP Publ., 2022) Rataj, Raphael; Werneburg, Matthias; Below, Harald; Kolb, Juergen F.
    Abstract Pulsed streamer discharges submerged in water have demonstrated potential in a number of applications. Especially the generation of discharges by short high-voltage pulses in the nanosecond range has been found to offer advantages with respect to efficacies and efficiencies. The exploited plasma chemistry generally relies on the initial production of short-lived species, e.g. hydroxyl radicals. Since the diagnostic of these transient species is not readily possible, a quantification of hydrogen peroxide provides an adequate assessment of underlying reactions. These conceivably depend on the characteristics of the high-voltage pulses, such as pulse duration, pulse amplitude, as well as pulse steepness. A novel electrochemical flow-injection system was used to relate these parameters to hydrogen peroxide concentrations. Accordingly, the accumulated hydrogen peroxide production for streamer discharges ignited in deionized water was investigated for pulse durations of 100 ns and 300 ns, pulse amplitudes between 54 kV and 64 kV, and pulse rise times from 16 ns to 31 ns. An independent control of the individual pulse parameters was enabled by providing the high-voltage pulses with a Blumlein line. Applied voltage, discharge current, optical light emission and time-integrated images were recorded for each individual discharge to determine dissipated energy, inception statistic, discharge expansion and the lifetime of a discharge. Pulse steepness did not affect the hydrogen peroxide production rate, but an increase in amplitude of 10 kV for 100 ns pulses nearly doubled the rate to (0.19 ± 0.01) mol l−1 s−1, which was overall the highest determined rate. The energy efficiency did not change with pulse amplitude, but was sensitive to pulse duration. Notably, production rate and efficiency doubled when the pulse duration decreased from 300 ns to 100 ns, resulting in the best peroxide production efficiency of (9.2 ± 0.9) g kWh−1. The detailed analysis revealed that the hydrogen peroxide production rate could be described by the energy dissipation in a representative single streamer. The production efficiency was affected by the corresponding discharge volume, which was comprised by the collective volume of all filaments. Hence, dissipating more energy in a filament resulted in an increased production rate, while increasing the relative volume of the discharge compared to its propagation time increased the energy efficiency.
  • Item
    Cylindrospermopsin is effectively degraded in water by pulsed corona-like and dielectric barrier discharges
    (Amsterdam [u.a.] : Elsevier Science, 2020) Schneider, Marcel; Rataj, Raphael; Kolb, Juergen F.; Bláha, Luděk
    Cylindrospermopsin (CYN) is an important cyanobacterial toxin posing a major threat to surface waters during cyanobacterial blooms. Hence, methods for cyanotoxin removal are required to confront seasonal or local incidences to sustain the safety of potable water reservoirs. Non-thermal plasmas provide the possibility for an environmentally benign treatment which can be adapted to specific concentrations and environmental conditions without the need of additional chemicals. We therefore investigated the potential of two different non-thermal plasma approaches for CYN degradation, operated either in a water mist, i.e. in air, or submerged in water. A degradation efficacy of 0.03 ± 0.00 g kWh−1 L−1 was found for a dielectric barrier discharge (DBD) operated in air, while a submerged pulsed corona-like discharge resulted in an efficacy of 0.24 ± 0.02 g kWh−1 L−1. CYN degradation followed a pseudo zeroth order or pseudo first order reaction kinetic, respectively. Treatment efficacy of the corona-like discharge submerged in water increased with pH values of the initial solution changing from 5.0 to 7.5. Notably, a pH-depending residual oxidative effect was observed for the submerged discharge, resulting in ongoing CYN degradation, even without further plasma treatment. In this case hydroxyl radicals were identified as the dominant oxidants of CYN at acidic pH values. In comparison, degradation by the DBD could be related primarily to the generation of ozone. © 2020 The AuthorsThe degradation of cylindrospermopsin by a pulsed corona-like discharge in water was more effective compared with a pulsed dielectric barrier discharge in air around a water mist. © 2020 The Authors
  • Item
    Assessment of Phycocyanin Extraction from Cyanidium caldarium by Spark Discharges, Compared to Freeze-Thaw Cycles, Sonication, and Pulsed Electric Fields
    (Basel : MDPI, 2021) Sommer, Marie-Christine; Balazinski, Martina; Rataj, Raphael; Wenske, Sebastian; Kolb, Juergen F.; Zocher, Katja
    Phycocyanin is a blue colored pigment, synthesized by several species of cyanobacteria and red algae. Besides the application as a food-colorant, the pigmented protein is of high interest as a pharmaceutically and nutritionally valuable compound. Since cyanobacteria-derived phycocyanin is thermolabile, red algae that are adapted to high temperatures are an interesting source for phycocyanin extraction. Still, the extraction of high quality phycocyanin from red algae is challenging due to the strong and rigid cell wall. Since standard techniques show low yields, alternative methods are needed. Recently, spark discharges have been shown to gently disintegrate microalgae and thereby enable the efficient extraction of susceptible proteins. In this study, the applicability of spark discharges for phycocyanin extraction from the red alga Cyanidium caldarium was investigated. The efficiency of 30 min spark discharges was compared with standard treatment protocols, such as three times repeated freeze-thaw cycles, sonication, and pulsed electric fields. Input energy for all physical methods were kept constant at 11,880 J to ensure comparability. The obtained extracts were evaluated by photometric and fluorescent spectroscopy. Highest extraction yields were achieved with sonication (53 mg/g dry weight (dw)) and disintegration by spark discharges (4 mg/g dw) while neither freeze-thawing nor pulsed electric field disintegration proved effective. The protein analysis via LC-MS of the former two extracts revealed a comparable composition of phycobiliproteins. Despite the lower total concentration of phycocyanin after application of spark discharges, the purity in the raw extract was higher in comparison to the extract attained by sonication.