Search Results

Now showing 1 - 10 of 16
  • Item
    Fire, late frost, nun moth and drought risks in Germany's forests under climate change
    (Stuttgart : E. Schweizerbart Science Publishers, 2016) Lasch-Born, Petra; Suckow, Felicitas; Gutsch, Martin; Hauf, Ylva; Hoffmann, Peter; Kollas, Chris; Reyer, Christopher P.O.
    Ongoing climate change affects growth and increases biotic and abiotic threats to Germany's forests. We analysed how these risks develop through the mid-century under a variety of climate change scenarios using the process-based forest model 4C. This model allows the calculation of indicators for fire danger, late frost risk for beech and oak, drought stress and nun moth risk. 4C was driven by a set of 4 simulations of future climate generated with the statistical model STARS and with 10 simulations of future climate based on EURO-CORDEX model simulations for the RCP2.6, RCP4.5 and RCP8.5 pathways. A set of about 70000 forest stands (Norway spruce, Scots pine, beech, oak, birch), based on the national forest inventory describing 98.4 % of the forest in Germany, was used together with data from a digital soil map. The changes and the range of changes were analysed by comparing results of a recent time period (1971–2005) and a scenario time period (2011–2045). All indicators showed higher risks for the scenario time period compared to the recent time period, except the late frost risk indicators, if averaged over all climate scenarios. The late frost risk for beech and oaks decreased for the main forest sites. Under recent climate conditions, the highest risk with regard to all five indicators was found to be in the Southwest Uplands and the northern part of Germany. The highest climate-induced uncertainty regarding the indicators for 2011–2045 is projected for the East Central Uplands and Northeast German Plain.
  • Item
    Balancing trade-offs between ecosystem services in Germany's forests under climate change
    (Bristol : IOP Publishing, 2018) Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P.O.
    Germany's forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services 'carbon' and 'timber' benefit from climate change, while 'water' and 'habitat' lose. We detect clear trade-offs between 'timber' and all other ecosystem services, as well as synergies between 'habitat' and 'carbon'. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining ecosystem services) whereas southern and central forest regions are more suitable to fulfil 'habitat' and 'carbon' services. The results provide the base for future forest management optimizations at the regional scale in order to maximize ecosystem services and forest ecosystem sustainability at the national scale.
  • Item
    Climate change reduces winter overland travel across the Pan-Arctic even under low-end global warming scenarios
    (Bristol : IOP Publ., 2021-2-10) Gädeke, Anne; Langer, Moritz; Boike, Julia; Burke, Eleanor J.; Chang, Jinfeng; Head, Melissa; Reyer, Christopher P.O.; Schaphoff, Sibyll; Thiery, Wim; Thonicke, Kirsten
    Amplified climate warming has led to permafrost degradation and a shortening of the winter season, both impacting cost-effective overland travel across the Arctic. Here we use, for the first time, four state-of-the-art Land Surface Models that explicitly consider ground freezing states, forced by a subset of bias-adjusted CMIP5 General Circulation Models to estimate the impact of different global warming scenarios (RCP2.6, 6.0, 8.5) on two modes of winter travel: overland travel days (OTDs) and ice road construction days (IRCDs). We show that OTDs decrease by on average −13% in the near future (2021–2050) and between −15% (RCP2.6) and −40% (RCP8.5) in the far future (2070–2099) compared to the reference period (1971–2000) when 173 d yr−1 are simulated across the Pan-Arctic. Regionally, we identified Eastern Siberia (Sakha (Yakutia), Khabarovsk Krai, Magadan Oblast) to be most resilient to climate change, while Alaska (USA), the Northwestern Russian regions (Yamalo, Arkhangelsk Oblast, Nenets, Komi, Khanty-Mansiy), Northern Europe and Chukotka are highly vulnerable. The change in OTDs is most pronounced during the shoulder season, particularly in autumn. The IRCDs reduce on average twice as much as the OTDs under all climate scenarios resulting in shorter operational duration. The results of the low-end global warming scenario (RCP2.6) emphasize that stringent climate mitigation policies have the potential to reduce the impact of climate change on winter mobility in the second half of the 21st century. Nevertheless, even under RCP2.6, our results suggest substantially reduced winter overland travel implying a severe threat to livelihoods of remote communities and increasing costs for resource exploration and transport across the Arctic.
  • Item
    Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: Benchmarking for impact assessment studies
    (Bristol : IOP Publishing, 2017) Ito, Akihiko; Nishina, Kazuya; Reyer, Christopher P.O.; François, Louis; Henrot, Alexandra-Jane; Munhoven, Guy; Jacquemin, Ingrid; Tian, Hanqin; Yang, Jia; Pan, Shufen; Morfopoulos, Catherine; Betts, Richard; Hickler, Thomas; Steinkamp, Jörg; Ostberg, Sebastian; Schaphoff, Sibyll; Ciais, Philippe; Chang, Jinfeng; Rafique, Rashid; Zeng, Ning; Zhao, Fang
    Simulating vegetation photosynthetic productivity (or gross primary production, GPP) is a critical feature of the biome models used for impact assessments of climate change. We conducted a benchmarking of global GPP simulated by eight biome models participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a) with four meteorological forcing datasets (30 simulations), using independent GPP estimates and recent satellite data of solar-induced chlorophyll fluorescence as a proxy of GPP. The simulated global terrestrial GPP ranged from 98 to 141 Pg C yr−1 (1981–2000 mean); considerable inter-model and inter-data differences were found. Major features of spatial distribution and seasonal change of GPP were captured by each model, showing good agreement with the benchmarking data. All simulations showed incremental trends of annual GPP, seasonal-cycle amplitude, radiation-use efficiency, and water-use efficiency, mainly caused by the CO2 fertilization effect. The incremental slopes were higher than those obtained by remote sensing studies, but comparable with those by recent atmospheric observation. Apparent differences were found in the relationship between GPP and incoming solar radiation, for which forcing data differed considerably. The simulated GPP trends co-varied with a vegetation structural parameter, leaf area index, at model-dependent strengths, implying the importance of constraining canopy properties. In terms of extreme events, GPP anomalies associated with a historical El Niño event and large volcanic eruption were not consistently simulated in the model experiments due to deficiencies in both forcing data and parameterized environmental responsiveness. Although the benchmarking demonstrated the overall advancement of contemporary biome models, further refinements are required, for example, for solar radiation data and vegetation canopy schemes.
  • Item
    Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales
    (Hoboken, NJ : Wiley-Blackwell, 2020) Lange, Stefan; Volkholz, Jan; Geiger, Tobias; Zhao, Fang; Vega, Iliusi; Veldkamp, Ted; Reyer, Christopher P.O.; Warszawski, Lila; Huber, Veronika; Jägermeyr, Jonas; Schewe, Jacob; Bresch, David N.; Büchner, Matthias; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; Emanuel, Kerry; Folberth, Christian; Gerten, Dieter; Gosling, Simon N.; Grillakis, Manolis; Hanasaki, Naota; Henrot, Alexandra-Jane; Hickler, Thomas; Honda, Yasushi; Ito, Akihiko; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Müller, Christoph; Nishina, Kazuya; Ostberg, Sebastian; Müller Schmied, Hannes; Seneviratne, Sonia I.; Stacke, Tobias; Steinkamp, Jörg; Thiery, Wim; Wada, Yoshihide; Willner, Sven; Yang, Hong; Yoshikawa, Minoru; Yue, Chao; Frieler, Katja
    The extent and impact of climate-related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter-Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events considered: river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves. Global warming of 2°C relative to preindustrial conditions is projected to lead to a more than fivefold increase in cross-category aggregate exposure globally. Changes in exposure are unevenly distributed, with tropical and subtropical regions facing larger increases than higher latitudes. The largest increases in overall exposure are projected for the population of South Asia. ©2020. The Authors.
  • Item
    Tackling unresolved questions in forest ecology: The past and future role of simulation models
    ([S.l.] : John Wiley & Sons, Inc., 2021) Maréchaux, Isabelle; Langerwisch, Fanny; Huth, Andreas; Bugmann, Harald; Morin, Xavier; Reyer, Christopher P.O.; Seidl, Rupert; Collalti, Alessio; Dantas de Paula, Mateus; Fischer, Rico; Gutsch, Martin; Lexer, Manfred J.; Lischke, Heike; Rammig, Anja; Rödig, Edna; Sakschewski, Boris; Taubert, Franziska; Thonicke, Kirsten; Vacchiano, Giorgio; Bohn, Friedrich J.
    Understanding the processes that shape forest functioning, structure, and diversity remains challenging, although data on forest systems are being collected at a rapid pace and across scales. Forest models have a long history in bridging data with ecological knowledge and can simulate forest dynamics over spatio-temporal scales unreachable by most empirical investigations.We describe the development that different forest modelling communities have followed to underpin the leverage that simulation models offer for advancing our understanding of forest ecosystems.Using three widely applied but contrasting approaches - species distribution models, individual-based forest models, and dynamic global vegetation models - as examples, we show how scientific and technical advances have led models to transgress their initial objectives and limitations. We provide an overview of recent model applications on current important ecological topics and pinpoint ten key questions that could, and should, be tackled with forest models in the next decade.Synthesis. This overview shows that forest models, due to their complementarity and mutual enrichment, represent an invaluable toolkit to address a wide range of fundamental and applied ecological questions, hence fostering a deeper understanding of forest dynamics in the context of global change.
  • Item
    A framework for modeling adaptive forest management and decision making under climate change
    (Wolfville : The Resilience Alliance, 2017) Yousefpour, Rasoul; Temperli, Christian; Bredahl Jacobsen, Jette; Thorsen, Bo Jellesmark; Meilby, Henrik; Lexer, Manfred J.; Lindner, Marcus; Bugmann, Harald; Borges, Jose G.; Palma, João H.N.; Ray, Duncan; Zimmermann, Niklaus E.; Delzon, Sylvain; Kremer, Antoine; Kramer, Koen; Reyer, Christopher P.O.; Lasch-Born, Petra; Garcia-Gonzalo, Jordi; Hanewinkel, Marc
    Adapting the management of forest resources to climate change involves addressing several crucial aspects to provide a valid basis for decision making. These include the knowledge and belief of decision makers, the mapping of management options for the current as well as anticipated future bioclimatic and socioeconomic conditions, and the ways decisions are evaluated and made. We investigate the adaptive management process and develop a framework including these three aspects, thus providing a structured way to analyze the challenges and opportunities of managing forests in the face of climate change. We apply the framework for a range of case studies that differ in the way climate and its impacts are projected to change, the available management options, and how decision makers develop, update, and use their beliefs about climate change scenarios to select among adaptation options, each being optimal for a certain climate change scenario. We describe four stylized types of decision-making processes that differ in how they (1) take into account uncertainty and new information on the state and development of the climate and (2) evaluate alternative management decisions: the “no-change,” the “reactive,” the “trend-adaptive,” and the “forward-looking adaptive” decision-making types. Accordingly, we evaluate the experiences with alternative management strategies and recent publications on using Bayesian optimization methods that account for different simulated learning schemes based on varying knowledge, belief, and information. Finally, our proposed framework for identifying adaptation strategies provides solutions for enhancing forest structure and diversity, biomass and timber production, and reducing climate change-induced damages. They are spatially heterogeneous, reflecting the diversity in growing conditions and socioeconomic settings within Europe.
  • Item
    The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests
    (Katlenburg-Lindau : Copernics Publications, 2020) Reyer, Christopher P.O.; Silveyra Gonzalez, Ramiro; Dolos, Klara; Hartig, Florian; Hauf, Ylva; Noack, Matthias; Lasch-Born, Petra; Rötzer, Thomas; Pretzsch, Hans; Meesenburg, Henning; Fleck, Stefan; Wagner, Markus; Bolte, Andreas; Sanders, Tanja G.M.; Kolari, Pasi; Mäkelä, Annikki; Vesala, Timo; Mammarella, Ivan; Pumpanen, Jukka; Collalti, Alessio; Trotta, Carlo; Matteucci, Giorgio; D'Andrea, Ettore; Foltýnová, Lenka; Krejza, Jan; Ibrom, Andreas; Pilegaard, Kim; Loustau, Denis; Bonnefond, Jean-Marc; Berbigier, Paul; Picart, Delphine; Lafont, Sébastien; Dietze, Michael; Cameron, David; Vieno, Massimo; Tian, Hanqin; Palacios-Orueta, Alicia; Cicuendez, Victor; Recuero, Laura; Wiese, Klaus; Büchner, Matthias; Lange, Stefan; Volkholz, Jan; Kim, Hyungjun; Horemans, Joanna A.; Bohn, Friedrich; Steinkamp, Jörg; Chikalanov, Alexander; Weedon, Graham P.; Sheffield, Justin; Babst, Flurin; Vega del Valle, Iliusi; Suckow, Felicitas; Martel, Simon; Mahnken, Mats; Gutsch, Martin; Frieler, Katja
    Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database (PROFOUND DB) provides a wide range of empirical data on European forests to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale. A particular advantage of this database is its wide coverage of multiple data sources at different hierarchical and temporal scales, together with environmental driving data as well as the latest climate scenarios. Specifically, the PROFOUND DB provides general site descriptions, soil, climate, CO2, nitrogen deposition, tree and forest stand level, and remote sensing data for nine contrasting forest stands distributed across Europe. Moreover, for a subset of five sites, time series of carbon fluxes, atmospheric heat conduction and soil water are also available. The climate and nitrogen deposition data contain several datasets for the historic period and a wide range of future climate change scenarios following the Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). We also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND DB is available freely as a “SQLite” relational database or “ASCII” flat file version (at https://doi.org/10.5880/PIK.2020.006/; Reyer et al., 2020). The data policies of the individual contributing datasets are provided in the metadata of each data file. The PROFOUND DB can also be accessed via the ProfoundData R package (https://CRAN.R-project.org/package=ProfoundData; Silveyra Gonzalez et al., 2020), which provides basic functions to explore, plot and extract the data for model set-up, calibration and evaluation.
  • Item
    Assessing inter-sectoral climate change risks: The role of ISIMIP
    (Bristol : IOP Publishing, 2017) Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Smith, Mark Stafford; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P.O.; Schewe, Jacob; van Vuuren, Detlef; Warszawski, Lila
    The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socio-economic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.
  • Item
    Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?
    (Bristol : IOP Publishing, 2017) Reyer, Christopher P.O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc
    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.