Search Results

Now showing 1 - 10 of 10
  • Item
    The Weak 3D Topological Insulator Bi12Rh3Sn3I9
    (Weinheim : Wiley-VCH, 2020) Lê Anh, Mai; Kaiser, Martin; Ghimire, Madhav Prasad; Richter, Manuel; Koepernik, Klaus; Gruschwitz, Markus; Tegenkamp, Christoph; Doert, Thomas; Ruck, Michael
    Topological insulators (TIs) gained high interest due to their protected electronic surface states that allow dissipation-free electron and information transport. In consequence, TIs are recommended as materials for spintronics and quantum computing. Yet, the number of well-characterized TIs is rather limited. To contribute to this field of research, we focused on new bismuth-based subiodides and recently succeeded in synthesizing a new compound Bi12Rh3Sn3I9, which is structurally closely related to Bi14Rh3I9 – a stable, layered material. In fact, Bi14Rh3I9 is the first experimentally supported weak 3D TI. Both structures are composed of well-defined intermetallic layers of ∞2[(Bi4Rh)3I]2+ with topologically protected electronic edge-states. The fundamental difference between Bi14Rh3I9 and Bi12Rh3Sn3I9 lies in the composition and the arrangement of the anionic spacer. While the intermetallic 2D TI layers in Bi14Rh3I9 are isolated by ∞1[Bi2I8]2− chains, the isoelectronic substitution of bismuth(III) with tin(II) leads to ∞2[Sn3I8]2− layers as anionic spacers. First transport experiments support the 2D character of this material class and revealed metallic conductivity. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Discovery, Crystal Growth, and Characterization of Garnet Eu2PbSb2Zn3O12
    (Weinheim : Wiley-VCH, 2020) Morrow, Ryan; Sturza, Mihai I.; Ray, Rajyavardhan; Himcinschi, Cameliu; Kern, Jonas; Schlender, Philipp; Richter, Manuel; Wurmehl, Sabine; Büchner, Bernd
    Single crystal specimens of previously unknown garnet Eu2PbSb2Zn3O12 were grown in a reactive PbO:PbF2 flux medium. The crystals were characterized by a combination of X-ray crystallography, magnetization measurements, and the optical techniques of Raman, photoluminescence, and UV/Vis spectroscopy. The material exhibits Van Vleck paramagnetism associated with the J = 0 state of Eu3+, which was possible to accurately fit to a theoretical model. Band structure calculations were performed and compared to the experimental band gap of 1.98 eV. The crystals demonstrate photoluminescence associated with the 4f 6 configuration of the Eu3+ ions sitting at the distorted 8-coordinate garnet A site. The title compound represents a unique quinary contribution to a relatively unexplored area of rare earth bearing garnet crystal chemistry. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Strong and Weak 3D Topological Insulators Probed by Surface Science Methods
    (Weinheim : Wiley-VCH, 2020) Morgenstern, Markus; Pauly, Christian; Kellner, Jens; Liebmann, Marcus; Pratzer, Marco; Eschbach, Markus; Plucinski, Lukacz; Otto, Sebastian; Rasche, Bertold; Ruck, Michael; Richter, Manuel; Just, Sven; Lüpke, Felix; Voigtländer, Bert
    The contributions of surface science methods to discover and improve 3D topological insulator materials are reviewed herein, illustrated with examples from the authors’ own work. In particular, it is demonstrated that spin-polarized angular-resolved photoelectron spectroscopy is instrumental to evidence the spin-helical surface Dirac cone, to tune its Dirac point energy toward the Fermi level, and to discover novel types of topological insulators such as dual ones or switchable ones in phase change materials. Moreover, procedures are introduced to spatially map potential fluctuations by scanning tunneling spectroscopy and to identify topological edge states in weak topological insulators. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Accuracy and Precision in Electronic Structure Computation: Wien2k and FPLO
    (Basel : MDPI, 2022) Richter, Manuel; Kim, Seo-Jin; Koepernik, Klaus; Rosner, Helge; Möbius, Arnulf
    Electronic structure calculations in the framework of density functional theory are based on complex numerical codes which are used in a multitude of applications. Frequently, existing experimental information is used as a gauge for the reliability of such codes. However, their results depend both on the chosen exchange-correlation energy functional and on the specific numerical implementation of the Kohn-Sham equations. The only way to disentangle these two items is a direct comparison of two or more electronic structure codes. Here, we address the achievable numerical accuracy and numerical precision in the total energy computation of the two all-electron density-functional codes Wien2k and FPLO. Both codes are based on almost independent numerical implementations and largely differ in the representation of the Bloch wave function. Thus, it is a highly encouraging result that the total energy data obtained with both codes agree within less than 10−6. We here relate the term numerical accuracy to the value of the total energy E, while the term numerical precision is related to the numerical noise of E as observed in total energy derivatives. We find that Wien2k achieves a slightly higher accuracy than FPLO at the price of a larger numerical effort. Further, we demonstrate that the FPLO code shows somewhat higher precision, i.e., less numerical noise in E than Wien2k, which is useful for the evaluation of physical properties based on derivatives of E.
  • Item
    Tunable chirality of noncentrosymmetric magnetic Weyl semimetals in rare-earth carbides
    ([London] : Nature Publishing Group, 2022) Ray, Rajyavardhan; Sadhukhan, Banasree; Richter, Manuel; Facio, Jorge I.; van den Brink, Jeroen
    Even if Weyl semimetals are characterized by quasiparticles with well-defined chirality, exploiting this experimentally is severely hampered by Weyl lattice fermions coming in pairs with opposite chirality, typically causing the net chirality picked up by experimental probes to vanish. Here, we show this issue can be circumvented in a controlled manner when both time-reversal- and inversion symmetry are broken. To this end, we investigate chirality disbalance in the carbide family RMC2 (R a rare-earth and M a transition metal), showing several members to be Weyl semimetals. Using the noncentrosymmetric ferromagnet NdRhC2 as an illustrating example, we show that an odd number of Weyl nodes can be stabilized at its Fermi surface by properly tilting its magnetization. The chiral configuration endows a topological phase transition as the Weyl node transitions across the Fermi sheets, which triggers interesting chiral electromagnetic responses. Further, the tilt direction determines the sign of the resulting net chirality, opening up a simple route to control its sign and strength.
  • Item
    Magnetic-field- and temperature-dependent fermi surface of CeBiPt
    (Milton Park : Taylor & Francis, 2006) Wosnitza, J.; Goll, G.; Bianchi, A.D.; Bergk, B.; Kozlova, N.; Opahle, I.; Elgazzar, S.; Richter, Manuel; Stockert, O.; Löhneysen, H.V.; Yoshino, T.; Takabatake, T.
    The half-Heusler compounds CeBiPt and LaBiPt are semimetals with very low charge-carrier concentrations as evidenced by Shubnikov–de Haas (SdH) and Hall-effect measurements. Neutron-scattering results reveal a simple antiferromagnetic structure in CeBiPt below TN = 1.15 K. The band structure of CeBiPt sensitively depends on temperature, magnetic field and stoichiometry. Above a certain, sample-dependent, threshold field (B>25 T), the SdH signal disappears and the Hall coefficient reduces significantly. These effects are absent in the non-4f compound LaBiPt. Electronic-band-structure calculations can well explain the observed behaviour by a 4f-polarization-induced Fermi-surface modification.
  • Item
    Electric-field control of surface magnetic anisotropy: A density functional approach
    (Milton Park : Taylor & Francis, 2009) Zhang, Hongbin; Richter, Manuel; Koepernik, Klaus; Opahle, Ingo; Tasnádi, Ferenc; Eschrig, Helmut
    In a recent experiment, Weisheit et al (2007 Science 315 349) demonstrated that the coercivity of thin L10 FePt and FePd films can be modified by the external electric field in an electrochemical environment. Here, this observation is confirmed by density functional calculations for the intrinsic magnetic anisotropy. The origin of the effect is clarified by means of a general and simple method to simulate charged metal surfaces. It is predicted that the coercivity of thin CoPt films is much more susceptible to electric field than that of FePt films.
  • Item
    Creating Weyl nodes and controlling their energy by magnetization rotation
    (College Park, ML : American Physical Society, 2020) Ghimire, Madhav Prasad; Facio, Jorge I.; You, Jhih-Shih; Ye, Linda; Checkelsky, Joseph G.; Fang, Shiang; Kaxiras, Efthimios; Richter, Manuel; van den Brink, Jeroen
    As they do not rely on the presence of any crystal symmetry, Weyl nodes are robust topological features of an electronic structure that can occur at any momentum and energy. Acting as sinks and sources of Berry curvature, Weyl nodes have been predicted to strongly affect the transverse electronic response, like in the anomalous Hall or Nernst effects. However, to observe large anomalous effects the Weyl nodes need to be close to or at the Fermi level, which implies the band structure must be tuned by an external parameter, e.g., chemical doping. Here we show that in a ferromagnetic metal tuning of the Weyl node energy and momentum can be achieved by rotation of the magnetization. First, taking as example the elementary magnet hcp-Co, we use electronic structure calculations based on density-functional theory to show that by canting the magnetization away from the easy axis, Weyl nodes can be driven exactly to the Fermi surface. Second, we show that the same phenomenology applies to the kagome ferromagnet Co3Sn2S2, in which we additionally show how the dynamics in energy and momentum of the Weyl nodes affects the calculated anomalous Hall and Nernst conductivities. Our results highlight how the intrinsic magnetic anisotropy can be used to engineer Weyl physics.
  • Item
    Correlation between topological band character and chemical bonding in a Bi14Rh3I9-based family of insulators
    (London : Nature Publishing Group, 2016) Rasche, Bertold; Isaeva, Anna; Ruck, Michael; Koepernik, Klaus; Richter, Manuel; van den Brink, Jeroen
    Recently the presence of topologically protected edge-states in Bi14Rh3I9 was confirmed by scanning tunnelling microscopy consolidating this compound as a weak 3D topological insulator (TI). Here, we present a density-functional-theory-based study on a family of TIs derived from the Bi14Rh3I9 parent structure via substitution of Ru, Pd, Os, Ir and Pt for Rh. Comparative analysis of the band-structures throughout the entire series is done by means of a unified minimalistic tight-binding model that evinces strong similarity between the quantum-spin-Hall (QSH) layer in Bi14Rh3I9 and graphene in terms of -molecular orbitals. Topologically non-trivial energy gaps are found for the Ir-, Rh-, Pt- and Pd-based systems, whereas the Os- and Ru-systems remain trivial. Furthermore, the energy position of the metal -band centre is identified as the parameter which governs the evolution of the topological character of the band structure through the whole family of TIs. The -band position is shown to correlate with the chemical bonding within the QSH layers, thus revealing how the chemical nature of the constituents affects the topological band character.
  • Item
    Forscherverbund Magnetwerkstoffe - Teilvorhaben: Theorie der magneto-kristallinen Anisotropie von eisenreichen Übergangsmetall-Verbindungen : Schlußbericht
    (Dresden : Leibniz-Institut für Festkörper- und Werkstoffforschung, 2001) Richter, Manuel; Eschrig, Helmut
    [no abstract available]