Search Results

Now showing 1 - 2 of 2
  • Item
    Gaia Early Data Release 3: The celestial reference frame (Gaia-CRF3)
    (Les Ulis : EDP Sciences, 2022) Klioner, S.A.; Lindegren, L.; Mignard, F.; Hernández, J.; Ramos-Lerate, M.; Bastian, U.; Biermann, M.; Bombrun, A.; De Torres, A.; Gerlach, E.; Geyer, R.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J.-L.; Hambly, N.C.; Harrison, D.L.; Hestroffer, D.; Hodgkin, S.T.; Hilger, T.; Holl, B.; Janben, K.; Jevardat De Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A.C.; Löffler, W.; Marchal, O.; Marrese, P.M.; Moitinho, A.; Hobbs, D.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Lammers, U.L.; Sarro, L.M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; Van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; McMillan, P.J.; Aguado, J.J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M.A.; Alves, J.; Anderson, R.I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Steidelmüller, H.; Baker, S.G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M.A.; Bassilana, J.-L.; Bauchet, N.; Teyssier, D.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bossini, D.; Bouquillon, S.; Raiteri, C.M.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A.G.; Buzzi, R.; Bartolomé, S.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M.I.; Carrasco, J.M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Bernet, M.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W.J.; Cornez, T.; Castañeda, J.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; De Laverny, P.; De Luise, F.; Clotet, M.; De March, R.; De Ridder, J.; De Souza, R.; Del Peloso, E.F.; Del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J.-B.; Demouchy, C.; Dharmawardena, T.E.; Davidson, M.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fabricius, C.; Fienga, A.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Garralda Torres, N.; Gavel, A.; Gavras, P.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J.J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L.P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Portell, J.; Sarmiento, M.H.; Hidalgo, S.L.; Hładczuk, N.; Holland, G.; Huckle, H.E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, O.; Juaristi Campillo, J.; Rowell, N.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Korn, A.J.; Kóspál, A.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Torra, F.; Laizeau, P.; Lambert, S.; Lanza, A.F.; Lasne, Y.; Le Campion, J.-F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Torra, J.; Liao, S.; Licata, E.L.; Lindstrøm, H.E.P.; Lister, T.A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Brown, A.G.A.; Managau, S.; Mann, R.G.; Manteiga, M.; Marchant, J.M.; Marconi, M.; Marcos, J.; Santos, M. M. S. Marcos; Marín Pina, D.; Marinoni, S.; Marocco, F.; Vallenari, A.; Marshall, D.J.; Polo, L. Martin; Martín-Fleitas, J.M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Prusti, T.; Michalik, D.; Millar, N.R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; De Bruijne, J.H.J.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C.P.; Musella, I.; Nagy, Z.; Noval, L.; Arenou, F.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J.O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P.A.; Pallas-Quintela, L.; Panahi, A.; Babusiaux, C.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A.M.; Pineau, F.-X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Creevey, O.L.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Rambaux, N.; Ramos, P.; Re Fiorentin, P.; Regibo, S.; Richards, P.J.; Diaz, C. Rios; Ducourant, C.; Ripepi, V.; Riva, A.; Rix, H.-W.; Rixon, G.; Robichon, N.; Robin, A.C.; Robin, C.; Roelens, M.; Rogues, H.R.O.; Rohrbasser, L.; Evans, D.W.; Romero-Gómez, M.; Royer, F.; Ruz Mieres, D.; Rybicki, K.A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Eyer, L.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J.C.; Ségransan, D.; Semeux, D.; Guerra, R.; Shahaf, S.; Siddiqui, H.I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R.L.; Snaith, O.N.; Solano, E.; Hutton, A.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I.A.; Stephenson, C.A.; Süveges, M.; Surdej, J.; Jordi, C.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M.B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A.T.; Luri, X.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M.V.; Van Dillen, E.; Van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Panem, C.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N.A.; Bailer-Jones, C.A.L.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M.G.; Van Leeuwen, F.; Bakker, J.; Cacciari, C.; De Angeli, F.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G.M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; De Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.
    Context. Gaia-CRF3 is the celestial reference frame for positions and proper motions in the third release of data from the Gaia mission, Gaia DR3 (and for the early third release, Gaia EDR3, which contains identical astrometric results). The reference frame is defined by the positions and proper motions at epoch 2016.0 for a specific set of extragalactic sources in the (E)DR3 catalogue. Aims. We describe the construction of Gaia-CRF3 and its properties in terms of the distributions in magnitude, colour, and astrometric quality. Methods. Compact extragalactic sources in Gaia DR3 were identified by positional cross-matching with 17 external catalogues of quasi-stellar objects (QSO) and active galactic nuclei (AGN), followed by astrometric filtering designed to remove stellar contaminants. Selecting a clean sample was favoured over including a higher number of extragalactic sources. For the final sample, the random and systematic errors in the proper motions are analysed, as well as the radio-optical offsets in position for sources in the third realisation of the International Celestial Reference Frame (ICRF3). Results. Gaia-CRF3 comprises about 1.6 million QSO-like sources, of which 1.2 million have five-parameter astrometric solutions in Gaia DR3 and 0.4 million have six-parameter solutions. The sources span the magnitude range G = 13-21 with a peak density at 20.6 mag, at which the typical positional uncertainty is about 1 mas. The proper motions show systematic errors on the level of 12 μas yr-1 on angular scales greater than 15 deg. For the 3142 optical counterparts of ICRF3 sources in the S/X frequency bands, the median offset from the radio positions is about 0.5 mas, but it exceeds 4 mas in either coordinate for 127 sources. We outline the future of Gaia-CRF in the next Gaia data releases. Appendices give further details on the external catalogues used, how to extract information about the Gaia-CRF3 sources, potential (Galactic) confusion sources, and the estimation of the spin and orientation of an astrometric solution.
  • Item
    A self-consistent dynamical model of the Milky Way disc adjusted to Gaia data
    (Les Ulis : EDP Sciences, 2022) Robin, A.C.; Bienaymé, O.; Salomon, J.B.; Reylé, C.; Lagarde, N.; Figueras, F.; Mor, R.; Fernández-Trincado, J.G.; Montillaud, J.
    Context. Accurate astrometry achieved by Gaia for many stars in the Milky Way provides an opportunity to reanalyse the Galactic stellar populations from a large and homogeneous sample and to revisit the Galaxy gravitational potential. Aims. This paper shows how a self-consistent dynamical model can be obtained by fitting the gravitational potential of the Milky Way to the stellar kinematics and densities from Gaia data. Methods. We derived a gravitational potential using the Besancon Galaxy Model, and computed the disc stellar distribution functions based on three integrals of motion (E, Lz, I3) to model stationary stellar discs. The gravitational potential and the stellar distribution functions are built self-consistently, and are then adjusted to be in agreement with the kinematics and the density distributions obtained from Gaia observations. A Markov chain Monte Carlo (MCMC) is used to fit the free parameters of the dynamical model to Gaia parallax and proper motion distributions. The fit is done on several sets of Gaia data, mainly a subsample of the GCNS (Gaia catalogue of nearby stars to 100 pc) with G< 17, together with 26 deep fields selected from eDR3, widely spread in longitudes and latitudes. Results. We are able to determine the velocity dispersion ellipsoid and its tilt for subcomponents of different ages, both varying with R and z. The density laws and their radial scale lengths for the thin and thick disc populations are also obtained self-consistently. This new model has some interesting characteristics that come naturally from the process, such as a flaring thin disc. The thick disc is found to present very distinctive characteristics from the old thin disc, both in density and kinematics. This lends significant support to the idea that thin and thick discs were formed in distinct scenarios, as the density and kinematics transition between them is found to be abrupt. The dark matter halo is shown to be nearly spherical. We also derive the solar motion with regards to the Local Standard of Rest (LSR), finding U· = 10.79 ± 0.56 km s-1, V· = 11.06 ± 0.94 km s-1, and W· = 7.66 ± 0.43 km s-1, in close agreement with recent studies. Conclusions. The resulting fully self-consistent gravitational potential, still axisymmetric, is a good approximation of a smooth mass distribution in the Milky Way and can be used for further studies, including finding streams, substructures, and to compute orbits for real stars in our Galaxy.