Search Results

Now showing 1 - 6 of 6
  • Item
    From Paris to Makkah: heat stress risks for Muslim pilgrims at 1.5 °C and 2 °C
    (Bristol : IOP Publ., 2021-2-9) Saeed, Fahad; Schleussner, Carl-Friedrich; Almazroui, Mansour
    The pilgrimages of Muslims to Makkah (Hajj and Umrah) is one of the largest religious gatherings in the world which draws millions of people from around 180 countries each year. Heat stress during summer has led to health impacts including morbidity and mortality in the past, which is likely to worsen due to global warming. Here we investigate the impacts of increasing heat stress during the peak summer months over Makkah at present levels of warming as well as under Paris Agreement's targets of 1.5 °C and 2 °C global mean temperature increase above pre-industrial levels. This is achieved by using multi member ensemble projections from the half a degree additional warming, prognosis and projected impacts project. We find a substantial increase in the exceedance probabilities of dangerous thresholds (wet-bulb temperature >24.6 °C) in 1.5 °C and 2 °C warmer worlds over the summer months. For the 3 hottest months, August, September and October, even thresholds of extremely dangerous (wet-bulb temperature >29.1 °C) health risks may be surpassed. An increase in exceedance probability of dangerous threshold is projected by two and three times in 1.5 °C and 2 °C warmer worlds respectively for May as compared to the reference climate. September shows the highest increase in the exceedance probability of extremely dangerous threshold which is increased to 4 and 13 times in 1.5 °C and 2 °C warmer worlds respectively. Based on the indicators of hazard, exposure and vulnerability, we carried out probabilistic risk analysis of life-threatening heat stroke over Makkah. A ten time increase in the heat stroke risk at higher wet-bulb temperatures for each month is projected in 2 °C warmer world. If warming was limited to 1.5 °C world, the risk would only increase by about five times, or half the risk of 2 °C. Our results indicate that substantial heat related risks during Hajj and Umrah happening over peak summer months, as it is the case for Hajj during this decade, will require substantial adaptation measures and would negatively affect the performance of the rite. Stringent mitigation actions to keep the global temperature to 1.5 °C can reduce the risks of heat related illnesses and thereby reduce the non-economic loss and damage related to one of the central pillars of a world religion.
  • Item
    Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty
    (Bristol : IOP Publ., 2018) Schleussner, Carl-Friedrich; Deryng, Delphine; Müller, Christoph; Elliott, Joshua; Saeed, Fahad; Folberth, Christian; Liu, Wenfeng; Wang, Xuhui; Pugh, Thomas A. M.; Thiery, Wim; Seneviratne, Sonia I.; Rogelj, Joeri
    Following the adoption of the Paris Agreement, there has been an increasing interest in quantifying impacts at discrete levels of global mean temperature (GMT) increase such as 1.5 °C and 2 °C above pre-industrial levels. Consequences of anthropogenic greenhouse gas emissions on agricultural productivity have direct and immediate relevance for human societies. Future crop yields will be affected by anthropogenic climate change as well as direct effects of emissions such as CO2 fertilization. At the same time, the climate sensitivity to future emissions is uncertain. Here we investigate the sensitivity of future crop yield projections with a set of global gridded crop models for four major staple crops at 1.5 °C and 2 °C warming above pre-industrial levels, as well as at different CO2 levels determined by similar probabilities to lead to 1.5 °C and 2 °C, using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts project. For the same CO2 forcing, we find consistent negative effects of half a degree warming on productivity in most world regions. Increasing CO2 concentrations consistent with these warming levels have potentially stronger but highly uncertain effects than 0.5 °C warming increments. Half a degree warming will also lead to more extreme low yields, in particular over tropical regions. Our results indicate that GMT change alone is insufficient to determine future impacts on crop productivity.
  • Item
    Robust changes in tropical rainy season length at 1.5 °C and 2 °C
    (Bristol : IOP Publ., 2018) Saeed, Fahad; Bethke, Ingo; Fischer, Erich; Legutke, Stephanie; Shiogama, Hideo; Stone, Dáithí A.; Schleussner, Carl-Friedrich
    Changes in the hydrological cycle are among the aspects of climate change most relevant for human systems and ecosystems. Besides trends in overall wetting or drying, changes in temporal characteristics of wetting and drying are of crucial importance in determining the climate hazard posed by such changes. This is particularly the case for tropical regions, where most precipitation occurs during the rainy season and changes in rainy season onset and length have substantial consequences. Here we present projections for changes in tropical rainy season lengths for mean temperature increase of 1.5 °C and 2 °C above pre-industrial levels. Based on multi-ensemble quasi-stationary simulations at these warming levels, our analysis indicates robust changes in rainy season characteristics in large parts of the tropics despite substantial natural variability. Specifically, we report a robust shortening of the rainy season for all of tropical Africa as well as north-east Brazil. About 27% of West Africa is projected to experience robust changes in the rainy season length with a mean shortening of about 7 days under 1.5 °C. We find that changes in the temporal characteristics are largely unrelated to changes in overall precipitation, highlighting the importance of investigating both separately.
  • Item
    Impacts of 1.5 versus 2.0 °c on cereal yields in the West African Sudan Savanna
    (Bristol : IOP Publishing, 2018) Faye, Babacar; Webber, Heidi; Naab, Jesse B.; MacCarthy, Dilys S.; Adam, Myriam; Ewert, Frank; Lamers, John P.A.; Schleussner, Carl-Friedrich; Ruane, Alex; Gessner, Ursula; Hoogenboom, Gerrit; Boote, Ken; Shelia, Vakhtang; Saeed, Fahad; Wisser, Dominik; Hadir, Sofia; Laux, Patrick; Gaiser, Thomas
    To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 °C above pre-industrial levels, with the ambition to keep warming to 1.5 °C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 °C versus 2.0 °C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 °C compared to 1.5 °C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.
  • Item
    Limiting global warming to 1.5 °C will lower increases in inequalities of four hazard indicators of climate change
    (Bristol : IOP Publ., 2019) Shiogama, Hideo; Hasegawa, Tomoko; Fujimori, Shinichiro; Murakami, Daisuke; Takahashi, Kiyoshi; Tanaka, Katsumasa; Emori, Seita; Kubota, Izumi; Abe, Manabu; Imada, Yukiko; Watanabe, Masahiro; Mitchell, Daniel; Schaller, Nathalie; Sillmann, Jana; Fischer, Erich M.; Scinocca, John F.; Bethke, Ingo; Lierhammer, Ludwig; Takakura, Jun’ya; Trautmann, Tim; Döll, Petra; Ostberg, Sebastian; Müller Schmied, Hannes; Saeed, Fahad; Schleussner, Carl-Friedrich
    Clarifying characteristics of hazards and risks of climate change at 2 °C and 1.5 °C global warming is important for understanding the implications of the Paris Agreement. We perform and analyze large ensembles of 2 °C and 1.5 °C warming simulations. In the 2 °C runs, we find substantial increases in extreme hot days, heavy rainfalls, high streamflow and labor capacity reduction related to heat stress. For example, about half of the world's population is projected to experience a present day 1-in-10 year hot day event every other year at 2 °C warming. The regions with relatively large increases of these four hazard indicators coincide with countries characterized by small CO2 emissions, low-income and high vulnerability. Limiting global warming to 1.5 °C, compared to 2 °C, is projected to lower increases in the four hazard indicators especially in those regions.
  • Item
    Deadly Heat Stress to Become Commonplace Across South Asia Already at 1.5°C of Global Warming
    (Hoboken, NJ : Wiley, 2021) Saeed, Fahad; Schleussner, Carl‐Friedrich; Ashfaq, Moetasim
    South Asia (SA) is one of those hotspots where earliest exposure to deadly wet-bulb temperatures (Tw >35°C) is projected in warmer future climates. Here we find that even today parts of SA experience the upper limits of labor productivity (Tw >32°C) or human survivability (Tw >35°C), indicating that previous estimates for future exposure to Tw-based extremes may be conservative. Our results show that at 2°C global warming above pre-industrial levels, the per person exposure approximately increases by 2.2 (2.7) folds for unsafe labor (lethal) threshold compared to the 2006–2015 reference period. Limiting warming to 1.5°C would avoid about half that impact. The population growth under the middle-of-the-road socioeconomic pathway could further increase these exposures by a factor of ∼2 by the mid-century. These results indicate an imminent need for adaptation measures, while highlighting the importance of stringent Paris-compatible mitigation actions for limiting future emergence of such conditions in SA.