Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Electrically Driven Microcavity Exciton-Polariton Optomechanics at 20 GHz

2021, Kuznetsov, Alexander S., Machado, Diego H.O., Biermann, Klaus, Santos, Paulo V.

Microcavity exciton polaritons enable the resonant coupling of excitons and photons to vibrations in the super-high-frequency (SHF, 3–30 GHz) domain. We introduce here a novel platform for coherent SHF optomechanics based on the coupling of polaritons and electrically driven SHF longitudinal acoustic phonons confined in a planar Bragg microcavity. The highly monochromatic phonons with tunable amplitudes are excited over a wide frequency range by piezoelectric transducers, which also act as efficient phonon detectors with a very large dynamical range. The microcavity platform exploits the long coherence time of polaritons as well as their efficient coupling to phonons. Furthermore, an intrinsic property of the platform is the backfeeding of phonons to the interaction region via reflections at the sample boundaries, which leads to quality factor × frequency products (Q×f) exceeding 1014  Hz as well as huge modulation amplitudes of the optical transition energies exceeding 8 meV. We show that the modulation is dominated by the phonon-induced energy shifts of the excitonic polariton component. Thus, the large modulation leads to a dynamical switching of light-matter nature of the particles from a mixed (i.e., polaritonic) one to photonlike and excitonlike states at frequencies up to 20 GHz. On the one hand, this work opens the way for electrically driven polariton optomechanics in the nonadiabatic, sideband-resolved regime of coherent control. Here, the bidirectionality of the transducers can be exploited for light-to-sound-to-rf conversion. On the other hand, the large phonon frequencies and Q×f products enable phonon control with optical readout down to the single-particle regime at relatively high temperatures (of 1 K).

Loading...
Thumbnail Image
Item

Direct imaging of delayed magneto-dynamic modes induced by surface acoustic waves

2017, Foerster, Michael, Macià, Ferran, Statuto, Nahuel, Finizio, Simone, Hernández-Mínguez, Alberto, Lendínez, Sergi, Santos, Paulo V., Fontcuberta, Josep, Hernàndez, Joan Manel, Kläui, Mathias, Aballe, Lucia

The magnetoelastic effect—the change of magnetic properties caused by the elastic deformation of a magnetic material—has been proposed as an alternative approach to magnetic fields for the low-power control of magnetization states of nanoelements since it avoids charge currents, which entail ohmic losses. Here, we have studied the effect of dynamic strain accompanying a surface acoustic wave on magnetic nanostructures in thermal equilibrium. We have developed an experimental technique based on stroboscopic X-ray microscopy that provides a pathway to the quantitative study of strain waves and magnetization at the nanoscale. We have simultaneously imaged the evolution of both strain and magnetization dynamics of nanostructures at the picosecond time scale and found that magnetization modes have a delayed response to the strain modes, adjustable by the magnetic domain configuration. Our results provide fundamental insight into magnetoelastic coupling in nanostructures and have implications for the design of strain-controlled magnetostrictive nano-devices.

Loading...
Thumbnail Image
Item

Dynamically tuned non-classical light emission from atomic defects in hexagonal boron nitride

2019, Lazić, Snežana, Espinha, André, Yanguas, Sergio Pinilla, Gibaja, Carlos, Zamora, Félix, Ares, Pablo, Chhowalla, Manish, Paz, Wendel S., Palacios Burgos, Juan José, Hernández-Mínguez, Alberto, Santos, Paulo V., van der Meulen, Herko P.

Luminescent defects in hexagonal boron nitride (h-BN) have recently emerged as a promising platform for non-classical light emission. On-chip solutions, however, require techniques for controllable in-situ manipulation of quantum light. Here, we demonstrate the dynamic spectral and temporal tuning of the optical emission from h-BN via moving acousto-mechanical modulation induced by stimulated phonons. When perturbed by the propagating acoustic phonon, the optically probed radiative h-BN defects are periodically strained and their sharp emission lines are modulated by the deformation potential coupling. This results in an acoustically driven spectral tuning within a 2.5-meV bandwidth. Our findings, supported by first-principles theoretical calculations, reveal exceptionally high elasto-optic coupling in h-BN of ~50 meV/%. Temporal control of the emitted photons is achieved by combining the acoustically mediated fine-spectral tuning with spectral detection filtering. This study opens the door to the use of sound for scalable integration of h-BN emitters in nanophotonic and quantum information technologies. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

The 2019 surface acoustic waves roadmap

2019, Delsing, Per, Cleland, Andrew N., Schuetz, Martin J.A., Knörzer, Johannes, Giedke, Géza, Cirac, J. Ignacio, Srinivasan, Kartik, Wu, Marcelo, Balram, Krishna Coimbatore, Bäuerle, Christopher, Meunier, Tristan, Ford, Christopher J.B., Santos, Paulo V., Cerda-Méndez, Edgar, Wang, Hailin, Krenner, Hubert J., Nysten, Emeline D.S., Weiß, Matthias, Nash, Geoff R., Thevenard, Laura, Gourdon, Catherine, Rovillain, Pauline, Marangolo, Max, Duquesne, Jean-Yves, Fischerauer, Gerhard, Ruile, Werner, Reiner, Alexander, Paschke, Ben, Denysenko, Dmytro, Volkmer, Dirk, Wixforth, Achim, Bruus, Henrik, Wiklund, Martin, Reboud, Julien, Cooper, Jonathan M., Fu, YongQing, Brugger, Manuel S., Rehfeldt, Florian, Westerhausen, Christoph

Today, surface acoustic waves (SAWs) and bulk acoustic waves are already two of the very few phononic technologies of industrial relevance and can been found in a myriad of devices employing these nanoscale earthquakes on a chip. Acoustic radio frequency filters, for instance, are integral parts of wireless devices. SAWs in particular find applications in life sciences and microfluidics for sensing and mixing of tiny amounts of liquids. In addition to this continuously growing number of applications, SAWs are ideally suited to probe and control elementary excitations in condensed matter at the limit of single quantum excitations. Even collective excitations, classical or quantum are nowadays coherently interfaced by SAWs. This wide, highly diverse, interdisciplinary and continuously expanding spectrum literally unites advanced sensing and manipulation applications. Remarkably, SAW technology is inherently multiscale and spans from single atomic or nanoscopic units up even to the millimeter scale. The aim of this Roadmap is to present a snapshot of the present state of surface acoustic wave science and technology in 2019 and provide an opinion on the challenges and opportunities that the future holds from a group of renown experts, covering the interdisciplinary key areas, ranging from fundamental quantum effects to practical applications of acoustic devices in life science. © 2019 IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves

2022, Zanotto, Simone, Biasiol, Giorgio, Santos, Paulo V., Pitanti, Alessandro

Wave refraction at an interface between different materials is a basic yet fundamental phenomenon, transversal to several scientific realms – electromagnetism, gas and fluid acoustics, solid mechanics, and possibly also matter waves. Under specific circumstances, mostly enabled by structuration below the wavelength scale, i.e., through the metamaterial approach, waves undergo negative refraction, eventually enabling superlensing and transformation optics. However, presently known negative refraction systems are symmetric, in that they cannot distinguish between positive and negative angles of incidence. Exploiting a metamaterial with an asymmetric unit cell, we demonstrate that the aforementioned symmetry can be broken, ultimately relying on the specific shape of the Bloch mode isofrequency curves. Our study specialized upon a mechanical metamaterial operating at GHz frequency, which is by itself a building block for advanced technologies such as chip-scale hybrid optomechanical and electromechanical devices. However, the phenomenon is based on general wave theory concepts, and it applies to any frequency and time scale for any kind of linear waves, provided that a suitable shaping of the isofrequency contours is implemented.

Loading...
Thumbnail Image
Item

Dynamically tuned arrays of polariton parametric oscillators

2020, Kuznetsov, Alexander S., Dagvadorj, Galbadrakh, Biermann, Klaus, Szymanska, Marzena H., Santos, Paulo V.

The spatially varying strain field of the wave induces state-dependent energy shifts of discrete polariton levels with the appropriate symmetry for OPO triggering. The robustness of the dynamic acoustic tuning is demonstrated by the synchronous excitation of an array of confined OPOs using a single wave, which thus opens the way for the realization of scalable nonlinear on-chip systems. © 2020 Optical Society of America

Loading...
Thumbnail Image
Item

Polarized recombination of acoustically transported carriers in GaAs nanowires

2012, Möller, Michael, Hernández-Mínguez, Alberto, Breuer, Steffen, Pfüller, Carsten, Brandt, Oliver, de Lima Jr, Mauricio M., Cantarero, Andrés, Geelhaar, Lutz, Riechert, Henning, Santos, Paulo V.

The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport.

Loading...
Thumbnail Image
Item

On-chip generation and dynamic piezo-optomechanical rotation of single photons

2022, Bühler, Dominik D., Weiß, Matthias, Crespo-Poveda, Antonio, Nysten, Emeline D. S., Finley, Jonathan J., Müller, Kai, Santos, Paulo V., de Lima Jr., Mauricio M., Krenner, Hubert J.

Integrated photonic circuits are key components for photonic quantum technologies and for the implementation of chip-based quantum devices. Future applications demand flexible architectures to overcome common limitations of many current devices, for instance the lack of tuneabilty or built-in quantum light sources. Here, we report on a dynamically reconfigurable integrated photonic circuit comprising integrated quantum dots (QDs), a Mach-Zehnder interferometer (MZI) and surface acoustic wave (SAW) transducers directly fabricated on a monolithic semiconductor platform. We demonstrate on-chip single photon generation by the QD and its sub-nanosecond dynamic on-chip control. Two independently applied SAWs piezo-optomechanically rotate the single photon in the MZI or spectrally modulate the QD emission wavelength. In the MZI, SAWs imprint a time-dependent optical phase and modulate the qubit rotation to the output superposition state. This enables dynamic single photon routing with frequencies exceeding one gigahertz. Finally, the combination of the dynamic single photon control and spectral tuning of the QD realizes wavelength multiplexing of the input photon state and demultiplexing it at the output. Our approach is scalable to multi-component integrated quantum photonic circuits and is compatible with hybrid photonic architectures and other key components for instance photonic resonators or on-chip detectors.