Search Results

Now showing 1 - 3 of 3
  • Item
    Corrigendum: The role of storage dynamics in annual wheat prices (2017 Environ. Res. Lett. 12 054005)
    (Bristol : IOP Publ., 2018) Schewe, Jacob; Otto, Christian; Frieler, Katja
    [no abstract available]
  • Item
    Magnitude and robustness associated with the climate change impacts on global hydrological variables for transient and stabilized climate states
    (Bristol : IOP Publ., 2018) Boulange, Julien; Hanasaki, Naota; Veldkamp, Ted; Schewe, Jacob; Shiogama, Hideo
    Recent studies have assessed the impacts of climate change at specific global temperature targets using relatively short (30 year ) transient time-slice periods which are characterized by a steady increase in global mean temperature with time. The Inter-Sectoral Impacts Model Intercomparison Project Phase 2b (ISIMIP2b) provides trend-preserving bias-corrected climate model datasets over six centuries for four global climate models (GCMs) which therefore can be used to evaluate the potential effects of using time-slice periods from stabilized climate state rather than time-slice periods from transient climate state on climate change impacts. Using the H08 global hydrological model, the impacts of climate change, quantified as the deviation from the pre-industrial era, and the signal-to-noise (SN) ratios were computed for five hydrological variables, namely evapotranspiration (EVA), precipitation (PCP), snow water equivalent (SNW), surface temperature (TAR), and total discharge (TOQ) over 20 regions comprising the global land area. A significant difference in EVA for the transient and stabilized climate states was systematically detected for all four GCMs. In addition, three out of the four GCMs indicated that significant differences in PCP, TAR, and TOQ for the transient and stabilized climate states could also be detected over a small fraction of the globe. For most regions, the impacts of climate change toward EVA, PCP, and TOQ are indicated to be underestimated using the transient climate state simulations. The transient climate state was also identified to underestimate the SN ratios compared to the stabilized climate state. For both the global and regional scales, however, there was no indication that surface areas associated with the different classes of SN ratios changed depending on the two climate states (t-test, p > 0.01). Transient time slices may be considered a good approximation of the stabilized climate state, for large-scale hydrological studies and many regions and variables, as: (1) impacts of climate change were only significantly different from those of the stabilized climate state for a small fraction of the globe, and (2) these differences were not indicated to alter the robustness of the impacts of climate change.
  • Item
    Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts
    (Bristol : IOP Publ., 2018) Zaherpour, Jamal; Gosling, Simon N.; Mount, Nick; Müller Schmied, Hannes; Veldkamp, Ted I. E.; Dankers, Rutger; Eisner, Stephanie; Gerten, Dieter; Gudmundsson, Lukas; Haddeland, Ingjerd; Hanasaki, Naota; Kim, Hyungjun; Leng, Guoyong; Liu, Junguo; Masaki, Yoshimitsu; Oki, Taikan; Pokhrel, Yadu; Satoh, Yusuke; Schewe, Jacob; Wada, Yoshihide
    Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models' ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model—a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output.