Search Results

Now showing 1 - 2 of 2
  • Item
    Roadmap on photonic, electronic and atomic collision physics: I. Light-matter interaction
    (Bristol : IOP Publ., 2019) Ueda, Kiyoshi; Sokell, Emma; Schippers, Stefan; Aumayr, Friedrich; Sadeghpour, Hossein; Burgdörfer, Joachim; Lemell, Christoph; Tong, Xiao-Min; Pfeifer, Thomas; Calegari, Francesca; Palacios, Alicia; Martin, Fernando; Corkum, Paul; Sansone, Giuseppe; Gryzlova, Elena V.; Grum-Grzhimailo, Alexei N.; Piancastelli, Maria Novella; Weber, Peter M.; Steinle, Tobias; Amini, Kasra; Biegert, Jens; Berrah, Nora; Kukk, Edwin; Santra, Robin; Müller, Alfred; Dowek, Danielle; Lucchese, Robert R.; McCurdy, C. William; Bolognesi, Paola; Avaldi, Lorenzo; Jahnke, Till; Schöffler, Markus S.; Dörner, Reinhard; Mairesse, Yann; Nahon, Laurent; Smirnova, Olga; Schlathölter, Thomas; Campbell, Eleanor E.B.; Rost, Jan-Michael; Meyer, Michael; Tanaka, Kazuo A.
    We publish three Roadmaps on photonic, electronic and atomic collision physics in order to celebrate the 60th anniversary of the ICPEAC conference. In Roadmap I, we focus on the light-matter interaction. In this area, studies of ultrafast electronic and molecular dynamics have been rapidly growing, with the advent of new light sources such as attosecond lasers and x-ray free electron lasers. In parallel, experiments with established synchrotron radiation sources and femtosecond lasers using cutting-edge detection schemes are revealing new scientific insights that have never been exploited. Relevant theories are also being rapidly developed. Target samples for photon-impact experiments are expanding from atoms and small molecules to complex systems such as biomolecules, fullerene, clusters and solids. This Roadmap aims to look back along the road, explaining the development of these fields, and look forward, collecting contributions from twenty leading groups from the field. © 2019 IOP Publishing Ltd.
  • Item
    The sequence to hydrogenate coronene cations: A journey guided by magic numbers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Cazaux, Stéphanie; Boschman, Leon; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas
    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2.