Search Results

Now showing 1 - 5 of 5
  • Item
    Incremental improvements of 2030 targets insufficient to achieve the Paris Agreement goals
    (Göttingen : Copernicus Publ., 2020) Geiges, Andreas; Nauels, Alexander; Yanguas Parra, Paola; Andrijevic, Marina; Hare, William; Pfleiderer, Peter; Schaeffer, Michiel; Schleussner, Carl-Friedrich
    Current global mitigation ambition up to 2030 under the Paris Agreement, reflected in the National Determined Contributions (NDCs), is insufficient to achieve the agreement's 1.5 °C long-term temperature limit. As governments are preparing new and updated NDCs for 2020, the question as to how much collective improvement is achieved is a pivotal one for the credibility of the international climate regime. The recent Special Report on Global Warming of 1.5 °C by the Intergovernmental Panel on Climate Change has assessed a wide range of scenarios that achieve the 1.5 °C limit. Those pathways are characterised by a substantial increase in near-term action and total greenhouse gas (GHG) emission levels about 50 % lower than what is implied by current NDCs. Here we assess the outcomes of different scenarios of NDC updating that fall short of achieving this 1.5 °C benchmark. We find that incremental improvements in reduction targets, even if achieved globally, are insufficient to align collective ambition with the goals of the Paris Agreement. We provide estimates for global mean temperature increase by 2100 for different incremental NDC update scenarios and illustrate climate impacts under those median scenarios for extreme temperature, long-term sea-level rise and economic damages for the most vulnerable countries. Under the assumption of maintaining ambition as reflected in current NDCs up to 2100 and beyond, we project a reduction in the gross domestic product (GDP) in tropical countries of around 60 % compared to a no-climate-change scenario and median long-term sea-level rise of close to 2 m in 2300. About half of these impacts can be avoided by limiting warming to 1.5 °C or below. Scenarios of more incremental NDC improvements do not lead to comparable reductions in climate impacts. An increase in aggregated NDC ambition of big emitters by 33 % in 2030 does not reduce presented climate impacts by more than about half compared to limiting warming to 1.5 °C. Our results underscore that a transformational increase in 2030 ambition is required to achieve the goals of the Paris Agreement and avoid the worst impacts of climate change. © 2020 SPIE. All rights reserved.
  • Item
    Robust changes in tropical rainy season length at 1.5 °C and 2 °C
    (Bristol : IOP Publ., 2018) Saeed, Fahad; Bethke, Ingo; Fischer, Erich; Legutke, Stephanie; Shiogama, Hideo; Stone, Dáithí A.; Schleussner, Carl-Friedrich
    Changes in the hydrological cycle are among the aspects of climate change most relevant for human systems and ecosystems. Besides trends in overall wetting or drying, changes in temporal characteristics of wetting and drying are of crucial importance in determining the climate hazard posed by such changes. This is particularly the case for tropical regions, where most precipitation occurs during the rainy season and changes in rainy season onset and length have substantial consequences. Here we present projections for changes in tropical rainy season lengths for mean temperature increase of 1.5 °C and 2 °C above pre-industrial levels. Based on multi-ensemble quasi-stationary simulations at these warming levels, our analysis indicates robust changes in rainy season characteristics in large parts of the tropics despite substantial natural variability. Specifically, we report a robust shortening of the rainy season for all of tropical Africa as well as north-east Brazil. About 27% of West Africa is projected to experience robust changes in the rainy season length with a mean shortening of about 7 days under 1.5 °C. We find that changes in the temporal characteristics are largely unrelated to changes in overall precipitation, highlighting the importance of investigating both separately.
  • Item
    Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways
    (Bristol : IOP Publishing, 2017) Nauels, Alexander; Rogelj, Joeri; Schleussner, Carl-Friedrich; Meinshausen, Malte; Mengel, Matthias
    In order to assess future sea level rise and its societal impacts, we need to study climate change pathways combined with different scenarios of socioeconomic development. Here, we present sea level rise (SLR) projections for the Shared Socioeconomic Pathway (SSP) storylines and different year-2100 radiative forcing targets (FTs). Future SLR is estimated with a comprehensive SLR emulator that accounts for Antarctic rapid discharge from hydrofracturing and ice cliff instability. Across all baseline scenario realizations (no dedicated climate mitigation), we find 2100 median SLR relative to 1986–2005 of 89 cm (likely range: 57–130 cm) for SSP1, 105 cm (73–150 cm) for SSP2, 105 cm (75–147 cm) for SSP3, 93 cm (63–133 cm) for SSP4, and 132 cm (95–189 cm) for SSP5. The 2100 sea level responses for combined SSP-FT scenarios are dominated by the mitigation targets and yield median estimates of 52 cm (34–75 cm) for FT 2.6 Wm−2, 62 cm (40–96 cm) for FT 3.4 Wm−2, 75 cm (47–113 cm) for FT 4.5 Wm−2, and 91 cm (61–132 cm) for FT 6.0 Wm−2. Average 2081–2100 annual SLR rates are 5 mm yr−1 and 19 mm yr−1 for FT 2.6 Wm−2 and the baseline scenarios, respectively. Our model setup allows linking scenario-specific emission and socioeconomic indicators to projected SLR. We find that 2100 median SSP SLR projections could be limited to around 50 cm if 2050 cumulative CO2 emissions since pre-industrial stay below 850 GtC, with a global coal phase-out nearly completed by that time. For SSP mitigation scenarios, a 2050 carbon price of 100 US$2005 tCO2 −1 would correspond to a median 2100 SLR of around 65 cm. Our results confirm that rapid and early emission reductions are essential for limiting 2100 SLR.
  • Item
    Limiting global warming to 1.5 °C will lower increases in inequalities of four hazard indicators of climate change
    (Bristol : IOP Publ., 2019) Shiogama, Hideo; Hasegawa, Tomoko; Fujimori, Shinichiro; Murakami, Daisuke; Takahashi, Kiyoshi; Tanaka, Katsumasa; Emori, Seita; Kubota, Izumi; Abe, Manabu; Imada, Yukiko; Watanabe, Masahiro; Mitchell, Daniel; Schaller, Nathalie; Sillmann, Jana; Fischer, Erich M.; Scinocca, John F.; Bethke, Ingo; Lierhammer, Ludwig; Takakura, Jun’ya; Trautmann, Tim; Döll, Petra; Ostberg, Sebastian; Müller Schmied, Hannes; Saeed, Fahad; Schleussner, Carl-Friedrich
    Clarifying characteristics of hazards and risks of climate change at 2 °C and 1.5 °C global warming is important for understanding the implications of the Paris Agreement. We perform and analyze large ensembles of 2 °C and 1.5 °C warming simulations. In the 2 °C runs, we find substantial increases in extreme hot days, heavy rainfalls, high streamflow and labor capacity reduction related to heat stress. For example, about half of the world's population is projected to experience a present day 1-in-10 year hot day event every other year at 2 °C warming. The regions with relatively large increases of these four hazard indicators coincide with countries characterized by small CO2 emissions, low-income and high vulnerability. Limiting global warming to 1.5 °C, compared to 2 °C, is projected to lower increases in the four hazard indicators especially in those regions.
  • Item
    Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design
    (München : European Geopyhsical Union, 2017) Mitchell, Daniel; AchutaRao, Krishna; Allen, Myles; Bethke, Ingo; Beyerle, Urs; Ciavarella, Andrew; Forster, Piers M.; Fuglestvedt, Jan; Gillett, Nathan; Haustein, Karsten; Ingram, William; Iversen, Trond; Kharin, Viatcheslav; Klingaman, Nicholas; Massey, Neil; Fischer, Erich; Schleussner, Carl-Friedrich; Scinocca, John; Seland, Øyvind; Shiogama, Hideo; Shuckburgh, Emily; Sparrow, Sarah; Stone, Dáithí; Uhe, Peter; Wallom, David; Wehner, Michael; Zaaboul, Rashyd
    The Intergovernmental Panel on Climate Change (IPCC) has accepted the invitation from the UNFCCC to provide a special report on the impacts of global warming of 1.5°C above pre-industrial levels and on related global greenhouse-gas emission pathways. Many current experiments in, for example, the Coupled Model Inter-comparison Project (CMIP), are not specifically designed for informing this report. Here, we document the design of the half a degree additional warming, projections, prognosis and impacts (HAPPI) experiment. HAPPI provides a framework for the generation of climate data describing how the climate, and in particular extreme weather, might differ from the present day in worlds that are 1.5 and 2.0°C warmer than pre-industrial conditions. Output from participating climate models includes variables frequently used by a range of impact models. The key challenge is to separate the impact of an additional approximately half degree of warming from uncertainty in climate model responses and internal climate variability that dominate CMIP-style experiments under low-emission scenarios. Large ensembles of simulations (> 50 members) of atmosphere-only models for three time slices are proposed, each a decade in length: the first being the most recent observed 10-year period (2006–2015), the second two being estimates of a similar decade but under 1.5 and 2°C conditions a century in the future. We use the representative concentration pathway 2.6 (RCP2.6) to provide the model boundary conditions for the 1.5°C scenario, and a weighted combination of RCP2.6 and RCP4.5 for the 2°C scenario.