Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Perovskite Origami for Programmable Microtube Lasing

2021, Dong, Haiyun, Saggau, Christian Niclaas, Zhu, Minshen, Liang, Jie, Duan, Shengkai, Wang, Xiaoyu, Tang, Hongmei, Yin, Yin, Wang, Xiaoxia, Wang, Jiawei, Zhang, Chunhuan, Zhao, Yong Sheng, Ma, Libo, Schmidt, Oliver G.

Metal halide perovskites are promising materials for optoelectronic and photonic applications ranging from photovoltaics to laser devices. However, current perovskite devices are constrained to simple low-dimensional structures suffering from limited design freedom and holding up performance improvement and functionality upgrades. Here, a micro-origami technique is developed to program 3D perovskite microarchitectures toward a new type of microcavity laser. The design flexibility in 3D supports not only outstanding laser performance such as low threshold, tunable output, and high stability but also yields new functionalities like 3D confined mode lasing and directional emission in, for example, laser “array-in-array” systems. The results represent a significant step forward toward programmable microarchitectures that take perovskite optoelectronics and photonics into the 3D era. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.

Loading...
Thumbnail Image
Item

Nano energy for miniaturized systems

2021, Zhu, Minshen, Zhu, Feng, Schmidt, Oliver G.

Skin mountable electronic devices are in a high-speed development at the crossroads of materials science, electronics, and computer science. Sophisticated functions, such as sensing, actuating, and computing, are integrated into a soft electronic device that can be firmly mounted to any place of human body. These advanced electronic devices are capable of yielding abilities for us whenever they are needed and even expanding our abilities beyond their natural limitations. Despite the great promise of skin mounted electronic devices, they still lack satisfactory power supplies that are safe and continuous. This Perspective discusses the prospects of the development of energy storage devices for the next generation skin mountable electronic devices based on their unique requirements on flexibility and miniaturized size.

Loading...
Thumbnail Image
Item

Large-range frequency tuning of a narrow-linewidth quantum emitter

2020, Zhai, Liang, Löbl, Matthias C., Jahn, Jan-Philipp, Huo, Yongheng, Treutlein, Philipp, Schmidt, Oliver G., Rastelli, Armando, Warburton, Richard J.

A hybrid system of a semiconductor quantum dot single photon source and a rubidium quantum memory represents a promising architecture for future photonic quantum repeaters. One of the key challenges lies in matching the emission frequency of quantum dots with the transition frequency of rubidium atoms while preserving the relevant emission properties. Here, we demonstrate the bidirectional frequency tuning of the emission from a narrow-linewidth (close-to-transform-limited) quantum dot. The frequency tuning is based on a piezoelectric strain-amplification device, which can apply significant stress to thick bulk samples. The induced strain shifts the emission frequency of the quantum dot over a total range of 1.15 THz, about three orders of magnitude larger than its linewidth. Throughout the whole tuning process, both the spectral properties of the quantum dot and its single-photon emission characteristics are preserved. Our results show that external stress can be used as a promising tool for reversible frequency tuning of high-quality quantum dots and pave the wave toward the realization of a quantum dot–rubidium atom interface for quantum networking.

Loading...
Thumbnail Image
Item

Quantum dot-based broadband optical antenna for efficient extraction of single photons in the telecom O-band

2020, Yang, Jingzhong, Nawrath, Cornelius, Keil, Robert, Joos, Raphael, Zhang, Xi, Höfer, Bianca, Chen, Yan, Zopf, Michael, Jetter, Michael, Portalupi, Simone Luca, Ding, Fei, Michler, Peter, Schmidt, Oliver G.

Long-distance fiber-based quantum communication relies on efficient non-classical light sources operating at telecommunication wavelengths. Semiconductor quantum dots are promising candidates for on-demand generation of single photons and entangled photon pairs for such applications. However, their brightness is strongly limited due to total internal reflection at the semiconductor/vacuum interface. Here we overcome this limitation using a dielectric antenna structure. The non-classical light source consists of a gallium phosphide solid immersion lens in combination with a quantum dot nanomembrane emitting single photons in the telecom O-band. With this device, the photon extraction is strongly increased in a broad spectral range. A brightness of 17% (numerical aperture of 0.6) is obtained experimentally, with a single photon purity of 𝑔(2)(0)=0.049±0.02 at saturation power. This brings the practical implementation of quantum communication networks one step closer.

Loading...
Thumbnail Image
Item

Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations

2020, Zhu, Minshen, Wang, Xiaojie, Tang, Hongmei, Wang, Jiawei, Hao, Qi, Liu, Lixiang, Li, Yang, Zhang, Kai, Schmidt, Oliver G.

Hydrogels are widely used in flexible aqueous batteries due to their liquid-like ion transportation abilities and solid-like mechanical properties. Their potential applications in flexible and wearable electronics introduce a fundamental challenge: how to lower the freezing point of hydrogels to preserve these merits without sacrificing hydrogels' basic advantages in low cost and high safety. Moreover, zinc as an ideal anode in aqueous batteries suffers from low reversibility because of the formation of insulative byproducts, which is mainly caused by hydrogen evolution via extensive hydration of zinc ions. This, in principle, requires the suppression of hydration, which induces an undesirable increase in the freezing point of hydrogels. Here, it is demonstrated that cooperatively hydrated cations, zinc and lithium ions in hydrogels, are very effective in addressing the above challenges. This simple but unique hydrogel not only enables a 98% capacity retention upon cooling down to −20 °C from room temperature but also allows a near 100% capacity retention with >99.5% Coulombic efficiency over 500 cycles at −20 °C. In addition, the strengthened mechanical properties of the hydrogel under subzero temperatures result in excellent durability under various harsh deformations after the freezing process. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Steering Directional Light Emission and Mode Chirality through Postshaping of Cavity Geometry

2020, Wang, Jiawei, Tang, Min, Yang, Yue-De, Yin, Yin, Chen, Yan, Saggau, Christian Niclaas, Zhu, Minshen, Yuan, Xiaobo, Karnaushenko, Dmitriy, Huang, Yong-Zhen, Ma, Libo, Schmidt, Oliver G.

Dielectric optical microcavities have been explored as an excellent platform to manipulate the light flow and investigate non‐Hermitian physics in open optical systems. For whispering gallery mode optical microcavities, modifying the rotational symmetry is highly desirable for intriguing phenomena such as degenerated chiral modes and directional light emission. However, for the state‐of‐the‐art approaches, namely deforming the cavity geometry by precision lithography or introducing local scatterers near the cavity boundary via micromanipulation, there is a lack of flexibility in fine‐adjusting of chiral symmetry and far‐field emission direction. Here, precise engineering of cavity boundary using electron‐beam‐induced deposition is reported based on rolled‐up nanomembrane‐enabled spiral‐shaped microcavities. The deformation of outer boundary results in delicate tailoring of asymmetric backscattering between the outer and inner rolling edges, and hence deterministically strong mode chirality. Besides, the crescent‐shaped high‐index nanocap leads to modified light tunneling channels and inflected far‐field emission angle. It is envisioned that such a localized deposition‐assisted technique for adjusting the structural deformation of 3D optical microcavities will be highly useful for understanding rich insights in non‐Hermitian photonics and unfolding exotic properties on lasing, sensing, and cavity quantum electrodynamics.

Loading...
Thumbnail Image
Item

Printable magnetoelectronics

2013, Makarov, Denys, Karnaushenko, Daniil, Schmidt, Oliver G.

The field of printable electronics is well developed. A large variety of electronic components assembled as printable optoelectronic devices and communication modules are already available. However, the element responding to a magnetic field, which is highly demanded for the concept of printable electronics has only been realized very recently. A printable magnetic sensing device has been one of the remaining missing building blocks crucial to realize the concept of entirely printable electronics. Here, we position the novel topic of printable magnetic sensorics in a family of printable electronics and highlight possible application directions of this technology.

Loading...
Thumbnail Image
Item

A compact tube-in-tube microsized lithium-ion battery as an independent microelectric power supply unit

2021, Weng, Qunhong, Wang, Sitao, Liu, Lixiang, Lu, Xueyi, Zhu, Minshen, Li, Yang, Gabler, Felix, Schmidt, Oliver G.

Independent and well-packaged miniaturized energy storage devices (MESDs) are indispensable as power sources or backup units for integrated circuits and many dispersive electronics applications. Challenges associated with MESD development relate to their low packaged areal energy density and poor battery performance. Here, we propose a compact tube-in-tube battery configuration to overcome the areal energy density and packaging problems in microbatteries. Compact microtubular microelectrodes rolled up from patterned nanomembranes are sealed in an inert glass capillary with a thin tube wall. The resultant tube-in-tube microsized lithium-ion batteries (micro-LIBs), based on various active materials, exhibit very high and scalable packaged areal energy densities up to 605 microampere hours per square centimeter (μAh cm−2) or 313 μWh cm−2 with footprints as small as 0.39–0.79 mm2. This approach is a practical alternative for microbattery microelectrode, packaging, and configuration innovations.

Loading...
Thumbnail Image
Item

Magnetooptical response of permalloy multilayer structures on different substrate in the IR-VIS-UV spectral range

2019, Patra, Rajkumar, Mattheis, Roland, Stöcker, Hartmut, Monecke, Manuel, Salvan, Georgeta, Schäfer, Rudolf, Schmidt, Oliver G., Schmidt, Heidemarie

The magnetooptical (MO) response of Ru/Py/Ta thin film stacks with 4, 8, and 17 nm thick Ni81Fe19 permalloy (Py) films on a SiO2/Si and a ZnO substrate was measured by vector magnetooptical generalized ellipsometry. The MO response from VMOGE was modelled using a 4  ×  4 Mueller matrix algorithm. The wavelength-dependent, substrate-independent and thickness-independent complex MO coupling constant (Q) of Py in the Ru/Py/Ta thin film stacks was extracted by fitting Mueller matrix difference spectra in the spectral range from 300 nm to 1000 nm. Although the composition-dependent saturation magnetization of NixFe1−x alloys (x  =  0.0...1.0), e.g. of Ni81Fe19, is predictable from the two saturation magnetization end points, the MO coupling constant of NixFe1−x is not predictable from the two Q end points. However, in a small alloy range (0.0  <  x  <  0.2 and 0.8  <  x  <  1.0) the composition-dependent Q of NixFe1−x can be interpolated from a sufficiently high number of analyzed NixFe1−x alloys. The available complex MO coupling constants of six different NixFe1−x (x  =  1.0 to 0.0) alloys were used to interpolate MO response of binary NixFe1−x alloys in the range from x  =  0.0 to x  =  1.0.

Loading...
Thumbnail Image
Item

Real-Time IR Tracking of Single Reflective Micromotors through Scattering Tissues

2019, Aziz, Azaam, Medina-Sánchez, Mariana, Koukourakis, Nektarios, Wang, Jiawei, Kuschmierz, Robert, Radner, Hannes, Czarske, Jürgen W., Schmidt, Oliver G.

Medical micromotors have the potential to lead to a paradigm shift in future biomedicine, as they may perform active drug delivery, microsurgery, tissue engineering, or assisted fertilization in a minimally invasive manner. However, the translation to clinical treatment is challenging, as many applications of single or few micromotors require real-time tracking and control at high spatiotemporal resolution in deep tissue. Although optical techniques are a popular choice for this task, absorption and strong light scattering lead to a pronounced decrease of the signal-to-noise ratio with increasing penetration depth. Here, a highly reflective micromotor is introduced which reflects more than tenfold the light intensity of simple gold particles and can be precisely navigated by external magnetic fields. A customized optical IR imaging setup and an image correlation technique are implemented to track single micromotors in real-time and label-free underneath phantom and ex vivo mouse skull tissues. As a potential application, the micromotors speed is recorded when moving through different viscous fluids to determine the viscosity of diverse physiological fluids toward remote cardiovascular disease diagnosis. Moreover, the micromotors are loaded with a model drug to demonstrate their cargo-transport capability. The proposed reflective micromotor is suitable as theranostic tool for sub-skin or organ-on-a-chip applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.