Search Results

Now showing 1 - 8 of 8
  • Item
    Stamping Fabrication of Flexible Planar Micro‐Supercapacitors Using Porous Graphene Inks
    (Hoboken : Wiley, 2020) Li, Fei; Qu, Jiang; Li, Yang; Wang, Jinhui; Zhu, Minshen; Liu, Lixiang; Ge, Jin; Duan, Shengkai; Li, Tianming; Bandari, Vineeth Kumar; Huang, Ming; Zhu, Feng; Schmidt, Oliver G.
    High performance, flexibility, safety, and robust integration for micro‐supercapacitors (MSCs) are of immense interest for the urgent demand for miniaturized, smart energy‐storage devices. However, repetitive photolithography processes in the fabrication of on‐chip electronic components including various photoresists, masks, and toxic etchants are often not well‐suited for industrial production. Here, a cost‐effective stamping strategy is developed for scalable and rapid preparation of graphene‐based planar MSCs. Combining stamps with desired shapes and highly conductive graphene inks, flexible MSCs with controlled structures are prepared on arbitrary substrates without any metal current collectors, additives, and polymer binders. The interdigitated MSC exhibits high areal capacitance up to 21.7 mF cm−2 at a current of 0.5 mA and a high power density of 6 mW cm−2 at an energy density of 5 µWh cm−2. Moreover, the MSCs show outstanding cycling performance and remarkable flexibility over 10 000 charge–discharge cycles and 300 bending cycles. In addition, the capacitance and output voltage of the MSCs are easily adjustable through interconnection with well‐defined arrangements. The efficient, rapid manufacturing of the graphene‐based interdigital MSCs with outstanding flexibility, shape diversity, and high areal capacitance shows great potential in wearable and portable electronics.
  • Item
    Selective Out‐of‐Plane Optical Coupling between Vertical and Planar Microrings in a 3D Configuration
    (Hoboken, NJ : Wiley, 2020) Valligatla, Sreeramulu; Wang, Jiawei; Madani, Abbas; Naz, Ehsan Saei Ghareh; Hao, Qi; Saggau, Christian Niclaas; Yin, Yin; Ma, Libo; Schmidt, Oliver G.
    3D photonic integrated circuits are expected to play a key role in future optoelectronics with efficient signal transfer between photonic layers. Here, the optical coupling of tubular microcavities, supporting resonances in a vertical plane, with planar microrings, accommodating in‐plane resonances, is explored. In such a 3D coupled composite system with largely mismatched cavity sizes, periodic mode splitting and resonant mode shifts are observed due to mode‐selective interactions. The axial direction of the microtube cavity provides additional design freedom for selective mode coupling, which is achieved by carefully adjusting the axial displacement between the microtube and the microring. The spectral anticrossing behavior is caused by strong coupling in this composite optical system and is excellently reproduced by numerical modeling. Interfacing tubular microcavities with planar microrings is a promising approach toward interlayer light transfer with added optical functionality in 3D photonic systems.
  • Item
    Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations
    (Weinheim : Wiley-VCH, 2020) Zhu, Minshen; Wang, Xiaojie; Tang, Hongmei; Wang, Jiawei; Hao, Qi; Liu, Lixiang; Li, Yang; Zhang, Kai; Schmidt, Oliver G.
    Hydrogels are widely used in flexible aqueous batteries due to their liquid-like ion transportation abilities and solid-like mechanical properties. Their potential applications in flexible and wearable electronics introduce a fundamental challenge: how to lower the freezing point of hydrogels to preserve these merits without sacrificing hydrogels' basic advantages in low cost and high safety. Moreover, zinc as an ideal anode in aqueous batteries suffers from low reversibility because of the formation of insulative byproducts, which is mainly caused by hydrogen evolution via extensive hydration of zinc ions. This, in principle, requires the suppression of hydration, which induces an undesirable increase in the freezing point of hydrogels. Here, it is demonstrated that cooperatively hydrated cations, zinc and lithium ions in hydrogels, are very effective in addressing the above challenges. This simple but unique hydrogel not only enables a 98% capacity retention upon cooling down to −20 °C from room temperature but also allows a near 100% capacity retention with >99.5% Coulombic efficiency over 500 cycles at −20 °C. In addition, the strengthened mechanical properties of the hydrogel under subzero temperatures result in excellent durability under various harsh deformations after the freezing process. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    3D Self‐Assembled Microelectronic Devices: Concepts, Materials, Applications
    (Hoboke, NJ : Wiley, 2020) Karnaushenko, Daniil; Kang, Tong; Bandari, Vineeth K.; Zhu, Feng; Schmidt, Oliver G.
    Modern microelectronic systems and their components are essentially 3D devices that have become smaller and lighter in order to improve performance and reduce costs. To maintain this trend, novel materials and technologies are required that provide more structural freedom in 3D over conventional microelectronics, as well as easier parallel fabrication routes while maintaining compatability with existing manufacturing methods. Self‐assembly of initially planar membranes into complex 3D architectures offers a wealth of opportunities to accommodate thin‐film microelectronic functionalities in devices and systems possessing improved performance and higher integration density. Existing work in this field, with a focus on components constructed from 3D self‐assembly, is reviewed, and an outlook on their application potential in tomorrow's microelectronics world is provided.
  • Item
    IRONSperm: Sperm-templated soft magnetic microrobots
    (Washington, DC : American Association for the Advancement of Science, 2020) Magdanz, Veronika; Khalil, Islam S.M.; Simmchen, Juliane; Furtado, Guilherme P.; Mohanty, Sumit; Gebauer, Johannes; Xu, Haifeng; Klingner, Anke; Aziz, Azaam; Medina-Sánchez, Mariana; Schmidt, Oliver G.; Misra, Sarthak
    We develop biohybrid magnetic microrobots by electrostatic self-assembly of nonmotile sperm cells and magnetic nanoparticles. Incorporating a biological entity into microrobots entails many functional advantages beyond shape templating, such as the facile uptake of chemotherapeutic agents to achieve targeted drug delivery. We present a single-step electrostatic self-assembly technique to fabricate IRONSperms, soft magnetic microswimmers that emulate the motion of motile sperm cells. Our experiments and theoretical predictions show that the swimming speed of IRONSperms exceeds 0.2 body length/s (6.8 ± 4.1 µm/s) at an actuation frequency of 8 Hz and precision angle of 45°. We demonstrate that the nanoparticle coating increases the acoustic impedance of the sperm cells and enables localization of clusters of IRONSperm using ultrasound feedback. We also confirm the biocompatibility and drug loading ability of these microrobots, and their promise as biocompatible, controllable, and detectable biohybrid tools for in vivo targeted therapy.
  • Item
    Stress‐Actuated Spiral Microelectrode for High‐Performance Lithium‐Ion Microbatteries
    (2020) Tang, Hongmei; Karnaushenko, Dmitriy D.; Neu, Volker; Gabler, Felix; Wang, Sitao; Liu, Lixiang; Li, Yang; Wang, Jiawei; Zhu, Minshen; Schmidt, Oliver G.
    Miniaturization of batteries lags behind the success of modern electronic devices. Neither the device volume nor the energy density of microbatteries meets the requirement of microscale electronic devices. The main limitation for pushing the energy density of microbatteries arises from the low mass loading of active materials. However, merely pushing the mass loading through increased electrode thickness is accompanied by the long charge transfer pathway and inferior mechanical properties for long‐term operation. Here, a new spiral microelectrode upon stress‐actuation accomplishes high mass loading but short charge transfer pathways. At a small footprint area of around 1 mm2, a 21‐fold increase of the mass loading is achieved while featuring fast charge transfer at the nanoscale. The spiral microelectrode delivers a maximum area capacity of 1053 µAh cm−2 with a retention of 67% over 50 cycles. Moreover, the energy density of the cylinder microbattery using the spiral microelectrode as the anode reaches 12.6 mWh cm−3 at an ultrasmall volume of 3 mm3. In terms of the device volume and energy density, the cylinder microbattery outperforms most of the current microbattery technologies, and hence provides a new strategy to develop high‐performance microbatteries that can be integrated with miniaturized electronic devices.
  • Item
    Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media
    (Weinheim : Wiley-VCH, 2020) Striggow, Friedrich; Medina-Sánchez, Mariana; Auernhammer, Günter K.; Magdanz, Veronika; Friedrich, Benjamin M.; Schmidt, Oliver G.
    Biohybrid micromotors propelled by motile cells are fascinating entities for autonomous biomedical operations on the microscale. Their operation under physiological conditions, including highly viscous environments, is an essential prerequisite to be translated to in vivo settings. In this work, a sperm-driven microswimmer, referred to as a spermbot, is demonstrated to operate in oviduct fluid in vitro. The viscoelastic properties of bovine oviduct fluid (BOF), one of the fluids that sperm cells encounter on their way to the oocyte, are first characterized using passive microrheology. This allows to design an artificial oviduct fluid to match the rheological properties of oviduct fluid for further experiments. Sperm motion is analyzed and it is confirmed that kinetic parameters match in real and artificial oviduct fluids, respectively. It is demonstrated that sperm cells can efficiently couple to magnetic microtubes and propel them forward in media of different viscosities and in BOF. The flagellar beat pattern of coupled as well as of free sperm cells is investigated, revealing an alteration on the regular flagellar beat, presenting an on–off behavior caused by the additional load of the microtube. Finally, a new microcap design is proposed to improve the overall performance of the spermbot in complex biofluids. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light
    (Weinheim : Wiley-VCH, 2020) Wolff, Niklas; Ciobanu, Vladimir; Enachi, Mihail; Kamp, Marius; Braniste, Tudor; Duppel, Viola; Shree, Sindu; Raevschi, Simion; Medina-Sánchez, Mariana; Adelung, Rainer; Schmidt, Oliver G.; Kienle, Lorenz; Tiginyanu, Ion
    The development of functional microstructures with designed hierarchical and complex morphologies and large free active surfaces offers new potential for improvement of the pristine microstructures properties by the synergistic combination of microscopic as well as nanoscopic effects. In this contribution, dedicated methods of transmission electron microscopy (TEM) including tomography are used to characterize the complex hierarchically structured hybrid GaN/ZnO:Au microtubes containing a dense nanowire network on their interior. The presence of an epitaxially stabilized and chemically extremely stable ultrathin layer of ZnO on the inner wall of the produced GaN microtubes is evidenced. Gold nanoparticles initially trigger the catalytic growth of solid solution phase (Ga1– xZnx)(N1– xOx) nanowires into the interior space of the microtube, which are found to be terminated by AuGa-alloy nanodots coated in a shell of amorphous GaOx species after the hydride vapor phase epitaxy process. The structural characterization suggests that this hierarchical design of GaN/ZnO microtubes could offer the potential to exhibit improved photocatalytic properties, which are initially demonstrated under UV light irradiation. As a proof of concept, the produced microtubes are used as photocatalytic micromotors in the presence of hydrogen peroxide solution with luminescent properties, which are appealing for future environmental applications and active matter fundamental studies. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim