Search Results

Now showing 1 - 2 of 2
  • Item
    Influence of low-level blocking and turbulence on the microphysics of a mixed-phase cloud in an inner-Alpine valley
    (Katlenburg-Lindau : European Geosciences Union, 2021) Ramelli, Fabiola; Henneberger, Jan; David, Robert O.; Lauber, Annika; Pasquier, Julie T.; Wieder, Jörg; Bühl, Johannes; Seifert, Patric; Engelmann, Ronny; Hervo, Maxime; Lohmann, Ulrike
    Previous studies that investigated orographic precipitation have primarily focused on isolated mountain barriers. Here we investigate the influence of low-level blocking and shear-induced turbulence on the cloud microphysics and precipitation formation in a complex inner-Alpine valley. The analysis focuses on a mid-level cloud in a post-frontal environment and a low-level feeder cloud induced by an in-valley circulation. Observations were obtained from an extensive set of instruments including ground-based remote sensing instrumentation, in situ instrumentation on a tethered-balloon system and ground-based precipitation measurements. During this event, the boundary layer was characterized by a blocked low-level flow and enhanced turbulence in the region of strong vertical wind shear at the boundary between the blocked layer in the valley and the stronger cross-barrier flow aloft. Cloud radar observations indicated changes in the microphysical cloud properties within the turbulent shear layer including enhanced linear depolarization ratio (i.e., change in particle shape or density) and increased radar reflectivity (i.e., enhanced ice growth). Based on the ice particle habits observed at the surface, we suggest that riming, aggregation and needle growth occurred within the turbulent layer. Collisions of fragile ice crystals (e.g., dendrites, needles) and the Hallett-Mossop process might have contributed to secondary ice production. Additionally, in situ instrumentation on the tethered-balloon system observed the presence of a low-level feeder cloud above a small-scale topographic feature, which dissipated when the low-level flow turned from a blocked to an unblocked state. Our observations indicate that the low-level blocking (due to the downstream mountain barrier) created an in-valley circulation, which led to the production of local updrafts and the formation of a low-level feeder cloud. Although the feeder cloud did not enhance precipitation in this particular case (since the majority of the precipitation sublimated when falling through a subsaturated layer above), we propose that local flow effects such as low-level blocking can induce the formation of feeder clouds in mountain valleys and on the leeward slope of foothills upstream of the main mountain barrier, where they can act to enhance orographic precipitation through the seeder-feeder mechanism.
  • Item
    A prequel to the Dantean Anomaly: The precipitation seesaw and droughts of 1302 to 1307 in Europe
    (Katlenburg-Lindau : Copernicus Ges., 2020) Bauch, Martin; Labbé, Thomas; Engel, Annabell; Seifert, Patric
    The cold/wet anomaly of the 1310s ("Dantean Anomaly") has attracted a lot of attention from scholars, as it is commonly interpreted as a signal of the transition between the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). The huge variability that can be observed during this decade, like the high interannual variability observed in the 1340s, has been highlighted as a side effect of this rapid climatic transition. In this paper, we demonstrate that a multiseasonal drought of almost 2 years occurred in the Mediterranean between 1302 and 1304, followed by a series of hot, dry summers north of the Alps from 1304 to 1306. We suggest that this outstanding dry anomaly, unique in the 13th and 14th centuries, together with cold anomalies of the 1310s and the 1340s, is part of the climatic shift from the MCA to the LIA. Our reconstruction of the predominant weather patterns of the first decade of the 14th century based on both documentary and proxy data identifies multiple European precipitation seesaw events between 1302 and 1307, with similarities to the seesaw conditions which prevailed over continental Europe in 2018. It can be debated to what extent the 1302 1307 period can be compared to what is currently discussed regarding the influence of the phenomenon of Arctic amplification on the increasing frequency of persistent stable weather patterns that have occurred since the late 1980s. Additionally, this paper deals with socioeconomic and cultural responses to drought risks in the Middle Ages as outlined in contemporary sources and provides evidence that there is a significant correlation between pronounced dry seasons and fires that devastated cities. © 2020 Copernicus GmbH. All rights reserved.