Search Results

Now showing 1 - 2 of 2
  • Item
    Cahn--Hilliard--Brinkman model for tumor growth with possibly singular potentials
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Colli, Pierluigi; Gilardi, Gianni; Signori, Andrea; Sprekels, Jürgen
    We analyze a phase field model for tumor growth consisting of a Cahn--Hilliard--Brinkman system, ruling the evolution of the tumor mass, coupled with an advection-reaction-diffusion equation for a chemical species acting as a nutrient. The main novelty of the paper concerns the discussion of the existence of weak solutions to the system covering all the meaningful cases for the nonlinear potentials; in particular, the typical choices given by the regular, the logarithmic, and the double obstacle potentials are admitted in our treatise. Compared to previous results related to similar models, we suggest, instead of the classical no-flux condition, a Dirichlet boundary condition for the chemical potential appearing in the Cahn--Hilliard-type equation. Besides, abstract growth conditions for the source terms that may depend on the solution variables are postulated.
  • Item
    Optimal control of a phase field system modelling tumor growth with chemotaxis and singular potentials
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Colli, Pierluigi; Signori, Andrea; Sprekels, Jürgen
    A distributed optimal control problem for an extended model of phase field type for tumor growth is addressed. In this model, the chemotaxis effects are also taken into account. The control is realized by two control variables that design the dispensation of some drugs to the patient. The cost functional is of tracking type, whereas the potential setting has been kept quite general in order to allow regular and singular potentials to be considered. In this direction, some relaxation terms have been introduced in the system. We show the well-posedness of the state system, the Fréchet differentiability of the control-to-state operator in a suitable functional analytic framework, and, lastly, we characterize the first-order necessary conditions of optimality in terms of a variational inequality involving the adjoint variables.