Search Results

Now showing 1 - 10 of 12
  • Item
    Remote sensing and modelling analysis of the extreme dust storm hitting the Middle East and eastern Mediterranean in September 2015
    (Katlenburg-Lindau : EGU, 2017) Solomos, Stavros; Ansmann, Albert; Mamouri, Rodanthi-Elisavet; Binietoglou, Ioannis; Patlakas, Platon; Marinou, Eleni; Amiridis, Vassilis
    The extreme dust storm that affected the Middle East and the eastern Mediterranean in September 2015 resulted in record-breaking dust loads over Cyprus with aerosol optical depth exceeding 5.0 at 550ĝ€nm. We analyse this event using profiles from the European Aerosol Research Lidar Network (EARLINET) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), geostationary observations from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI), and high-resolution simulations from the Regional Atmospheric Modeling System (RAMS). The analysis of modelling and remote sensing data reveals the main mechanisms that resulted in the generation and persistence of the dust cloud over the Middle East and Cyprus. A combination of meteorological and surface processes is found, including (a) the development of a thermal low in the area of Syria that results in unstable atmospheric conditions and dust mobilization in this area, (b) the convective activity over northern Iraq that triggers the formation of westward-moving haboobs that merge with the previously elevated dust layer, and (c) the changes in land use due to war in the areas of northern Iraq and Syria that enhance dust erodibility.
  • Item
    GARRLiC and LIRIC: Strengths and limitations for the characterization of dust and marine particles along with their mixtures
    (Katlenburg-Lindau : Copernicus, 2017) Tsekeri, Alexandra; Lopatin, Anton; Amiridis, Vassilis; Marinou, Eleni; Igloffstein, Julia; Siomos, Nikolaos; Solomos, Stavros; Kokkalis, Panagiotis; Engelmann, Ronny; Baars, Holger; Gratsea, Myrto; Raptis, Panagiotis I.; Binietoglou, Ioannis; Mihalopoulos, Nikolaos; Kalivitis, Nikolaos; Kouvarakis, Giorgos; Bartsotas, Nikolaos; Kallos, George; Basart, Sara; Schuettemeyer, Dirk; Wandinger, Ulla; Ansmann, Albert; Chaikovsky, Anatoli P.; Dubovik, Oleg
    The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) and the LIdar-Radiometer Inversion Code (LIRIC) provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean during the CHARacterization of Aerosol mixtures of Dust and Marine origin Experiment (CHARADMExp). Three case studies are presented, focusing on dust-dominated, marinedominated and dust-marine mixing conditions. GARRLiC and LIRIC achieve a satisfactory characterization for the dust-dominated case in terms of particle microphysical properties and concentration profiles. The marine-dominated and the mixture cases are more challenging for both algorithms, although GARRLiC manages to provide more detailed microphysical retrievals compared to AERONET, while LIRIC effectively discriminates dust and marine particles in its concentration profile retrievals. The results are also compared with modelled dust and marine concentration profiles and surface in situ measurements.
  • Item
    Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements
    (Katlenburg-Lindau : EGU, 2019) Marinou, Eleni; Tesche, Matthias; Nenes, Athanasios; Ansmann, Albert; Schrod, Jann; Mamali, Dimitra; Tsekeri, Alexandra; Pikridas, Michael; Baars, Holger; Engelmann, Ronny; Voudouri, Kalliopi-Artemis; Solomos, Stavros; Sciare, Jean; Groß, Silke; Ewald, Florian; Amiridis, Vassilis
    Aerosols that are efficient ice-nucleating particles (INPs) are crucial for the formation of cloud ice via heterogeneous nucleation in the atmosphere. The distribution of INPs on a large spatial scale and as a function of height determines their impact on clouds and climate. However, in situ measurements of INPs provide sparse coverage over space and time. A promising approach to address this gap is to retrieve INP concentration profiles by combining particle concentration profiles derived by lidar measurements with INP efficiency parameterizations for different freezing mechanisms (immersion freezing, deposition nucleation). Here, we assess the feasibility of this new method for both ground-based and spaceborne lidar measurements, using in situ observations collected with unmanned aerial vehicles (UAVs) and subsequently analyzed with the FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment) INP counter from an experimental campaign at Cyprus in April 2016. Analyzing five case studies we calculated the cloud-relevant particle number concentrations using lidar measurements (n250,dry with an uncertainty of 20 % to 40 % and Sdry with an uncertainty of 30 % to 50 %), and we assessed the suitability of the different INP parameterizations with respect to the temperature range and the type of particles considered. Specifically, our analysis suggests that our calculations using the parameterization of Ullrich et al. (2017) (applicable for the temperature range −50 to −33 ∘C) agree within 1 order of magnitude with the in situ observations of nINP; thus, the parameterization of Ullrich et al. (2017) can efficiently address the deposition nucleation pathway in dust-dominated environments. Additionally, our calculations using the combination of the parameterizations of DeMott et al. (2015, 2010) (applicable for the temperature range −35 to −9 ∘C) agree within 2 orders of magnitude with the in situ observations of INP concentrations (nINP) and can thus efficiently address the immersion/condensation pathway of dust and nondust particles. The same conclusion is derived from the compilation of the parameterizations of DeMott et al. (2015) for dust and Ullrich et al. (2017) for soot.
  • Item
    An EARLINET early warning system for atmospheric aerosol aviation hazards
    (Katlenburg-Lindau : EGU, 2020) Papagiannopoulos, Nikolaos; D’Amico, Giuseppe; Gialitaki, Anna; Ajtai, Nicolae; Alados-Arboledas, Lucas; Amodeo, Aldo; Amiridis, Vassilis; Baars, Holger; Balis, Dimitris; Binietoglou, Ioannis; Comerón, Adolfo; Dionisi, Davide; Falconieri, Alfredo; Fréville, Patrick; Kampouri, Anna; Mattis, Ina; Mijić, Zoran; Molero, Francisco; Papayannis, Alex; Pappalardo, Gelsomina; Rodríguez-Gómez, Alejandro; Solomos, Stavros; Mona, Lucia
    A stand-alone lidar-based method for detecting airborne hazards for aviation in near real time (NRT) is presented. A polarization lidar allows for the identification of irregular-shaped particles such as volcanic dust and desert dust. The Single Calculus Chain (SCC) of the European Aerosol Research Lidar Network (EARLINET) delivers high-resolution preprocessed data: the calibrated total attenuated backscatter and the calibrated volume linear depolarization ratio time series. From these calibrated lidar signals, the particle backscatter coefficient and the particle depolarization ratio can be derived in temporally high resolution and thus provide the basis of the NRT early warning system (EWS). In particular, an iterative method for the retrieval of the particle backscatter is implemented. This improved capability was designed as a pilot that will produce alerts for imminent threats for aviation. The method is applied to data during two diverse aerosol scenarios: first, a record breaking desert dust intrusion in March 2018 over Finokalia, Greece, and, second, an intrusion of volcanic particles originating from Mount Etna, Italy, in June 2019 over Antikythera, Greece. Additionally, a devoted observational period including several EARLINET lidar systems demonstrates the network's preparedness to offer insight into natural hazards that affect the aviation sector. © 2020 Author(s).
  • Item
    Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset
    (Katlenburg-Lindau : EGU, 2017) Marinou, Eleni; Amiridis, Vassilis; Binietoglou, Ioannis; Tsikerdekis, Athanasios; Solomos, Stavros; Proestakis, Emannouil; Konsta, Dimitra; Papagiannopoulos, Nikolaos; Tsekeri, Alexandra; Vlastou, Georgia; Zanis, Prodromos; Balis, Dimitrios; Wandinger, Ulla; Ansmann, Albert
    In this study we use a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and EARLINET (European Aerosol Research Lidar Network) measurements and methods to provide a 3-D multiyear analysis on the evolution of Saharan dust over North Africa and Europe. The product uses a CALIPSO L2 backscatter product corrected with a depolarization-based method to separate pure dust in external aerosol mixtures and a Saharan dust lidar ratio (LR) based on long-term EARLINET measurements to calculate the dust extinction profiles. The methodology is applied on a 9-year CALIPSO dataset (2007-2015) and the results are analyzed here to reveal for the first time the 3-D dust evolution and the seasonal patterns of dust over its transportation paths from the Sahara towards the Mediterranean and Continental Europe. During spring, the spatial distribution of dust shows a uniform pattern over the Sahara desert. The dust transport over the Mediterranean Sea results in mean dust optical depth (DOD) values up to 0.1. During summer, the dust activity is mostly shifted to the western part of the desert where mean DOD near the source is up to 0.6. Elevated dust plumes with mean extinction values between 10 and 75 Mm-1 are observed throughout the year at various heights between 2 and 6 km, extending up to latitudes of 40° N. Dust advection is identified even at latitudes of about 60° N, but this is due to rare events of episodic nature. Dust plumes of high DOD are also observed above the Balkans during the winter period and above northwest Europe during autumn at heights between 2 and 4 km, reaching mean extinction values up to 50 Mm-1. The dataset is considered unique with respect to its potential applications, including the evaluation of dust transport models and the estimation of cloud condensation nuclei (CCN) and ice nuclei (IN) concentration profiles. Finally, the product can be used to study dust dynamics during transportation, since it is capable of revealing even fine dynamical features such as the particle uplifting and deposition on European mountainous ridges such as the Alps and Carpathian Mountains.
  • Item
    Aerosol absorption profiling from the synergy of lidar and sun-photometry: The ACTRIS-2 campaigns in Germany, Greece and Cyprus
    (Les Ulis : EDP Sciences, 2018) Tsekeri, Alexandra; Amiridis, Vassilis; Lopatin, Anton; Marinou, Eleni; Giannakaki, Eleni; Pikridas, Michael; Sciare, Jean; Liakakou, Eleni; Gerasopoulos, Evangelos; Duesing, Sebastian; Corbin, Joel C.; Gysel, Martin; Bukowiecki, Nicolas; Baars, Holger; Engelmann, Ronny; Wehner, Birgit; Kottas, Michael; Mamali, Dimitra; Kokkalis, Panagiotis; Raptis, Panagiotis I.; Stavroulas, Iasonas; Keleshis, Christos; Müller, Detlef; Solomos, Stavros; Binietoglou, Ioannis; Mihalopoulos, Nikolaos; Papayannis, Alexandros; Stachlewska, Iwona S.; Igloffstein, Julia; Wandinger, Ulla; Ansmann, Albert; Dubovik, Oleg; Goloub, Philippe; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.
  • Item
    Lidar Ice nuclei estimates and how they relate with airborne in-situ measurements
    (Les Ulis : EDP Sciences, 2018) Marinou, Eleni; Amiridis, Vassilis; Ansmann, Albert; Nenes, Athanasios; Balis, Dimitris; Schrod, Jann; Binietoglou, Ioannis; Solomos, Stavros; Mamali, Dimitra; Engelmann, Ronny; Baars, Holger; Kottas, Michael; Tsekeri, Alexandra; Proestakis, Emmanouil; Kokkalis, Panagiotis; Goloub, Philippe; Cvetkovic, Bojan; Nichovic, Slobodan; Mamouri, Rodanthi; Pikridas, Michael; Stavroulas, Iasonas; Keleshis, Christos; Sciare, Jean
    By means of available ice nucleating particle (INP) parameterization schemes we compute profiles of dust INP number concentration utilizing Polly-XT and CALIPSO lidar observations during the INUIT-BACCHUS-ACTRIS 2016 campaign. The polarization-lidar photometer networking (POLIPHON) method is used to separate dust and non-dust aerosol backscatter, extinction, mass concentration, particle number concentration (for particles with radius > 250 nm) and surface area concentration. The INP final products are compared with aerosol samples collected from unmanned aircraft systems (UAS) and analyzed using the ice nucleus counter FRIDGE.
  • Item
    Extreme dust storm over the eastern Mediterranean in September 2015: Satellite, lidar, and surface observations in the Cyprus region
    (München : European Geopyhsical Union, 2016) Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Nisantzi, Argyro; Solomos, Stavros; Kallos, George; Hadjimitsis, Diofantos G.
    A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly >  10 g m−2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m−3 and the observed meteorological optical range (visibility) was reduced to 300–750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm−1 and thus TSP mass concentrations of 10 000 µg m−3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm−1 and the mass concentrations reached 2000 µg m−3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze.
  • Item
    Is the near-spherical shape the "new black" for smoke?
    (Katlenburg-Lindau : EGU, 2020) Gialitaki, Anna; Tsekeri, Alexandra; Amiridis, Vassilis; Ceolato, Romain; Paulien, Lucas; Kampouri, Anna; Gkikas, Antonis; Solomos, Stavros; Marinou, Eleni; Haarig, Moritz; Baars, Holger; Ansmann, Albert; Lapyonok, Tatyana; Lopatin, Anton; Dubovik, Oleg; Groß, Silke; Wirth, Martin; Tsichla, Maria; Tsikoudi, Ioanna; Balis, Dimitris
    We examine the capability of near-sphericalshaped particles to reproduce the triple-wavelength particle linear depolarization ratio (PLDR) and lidar ratio (LR) values measured over Europe for stratospheric smoke originating from Canadian wildfires. The smoke layers were detected both in the troposphere and the stratosphere, though in the latter case the particles presented PLDR values of almost 18% at 532 nm as well as a strong spectral dependence from the UV to the near-IR wavelength. Although recent simulation studies of rather complicated smoke particle morphologies have shown that heavily coated smoke aggregates can produce large PLDR, herein we propose a much simpler model of compact near-spherical smoke particles. This assumption allows for the reproduction of the observed intensive optical properties of stratospheric smoke, as well as their spectral dependence. We further examine whether an extension of the current Aerosol Robotic Network (AERONET) scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke cases associated with enhanced PLDR. Results of our study illustrate the fact that triple-wavelength PLDR and LR lidar measurements can provide us with additional insight when it comes to particle characterization. © 2020 Author(s).
  • Item
    Application of the Garrlic algorithm for the characterization of dust and marine particles utilizing the lidar-sunphotometer synergy
    (Les Ulis : EDP Sciences, 2016) Tsekeri, Alexandra; Amiridis, Vassilis; Lopatin, Anton; Marinou, Eleni; Kokkalis, Panos; Solomos, Stavros; Engelmann, Ronny; Baars, Holger; Wandinger, Ulla; Ansmann, Albert; Schüttemeyer, Dirk; Dubovik, Oleg
    The importance of studying the vertical distribution of aerosol plumes is prominent in regional and climate studies. The new Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) provides this opportunity combining active and passive ground-based remote sensing from lidar and sunphotometer measurements. Here, we utilize GARRLiC capabilities for the characterization of Saharan dust and marine particles at the Eastern Mediterranean region during the Characterization of Aerosol mixtures of Dust And Marine origin Experiment (CHARADMExp). Two different case studies are presented, a dust-dominated case which we managed to characterize successfully in terms of the particle microphysical properties and their vertical distribution and a case of two separate layers of marine and dust particles for which the characterization proved to be more challenging.