Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Milliradian precision ultrafast pulse control for spectral phase metrology

2021, Stamm, Jacob, Benel, Jorge, Escoto, Esmerando, Steinmeyer, Günter, Dantus, Marcos

A pulse-shaper-based method for spectral phase measurement and compression with milliradian precision is proposed and tested experimentally. Measurements of chirp and third-order dispersion are performed and compared to theoretical predictions. The single-digit milliradian accuracy is benchmarked by a group velocity dispersion measurement of fused silica.

Loading...
Thumbnail Image
Item

Long-term hybrid stabilization of the carrier-envelope phase

2020, Hirschman, Jack, Lemons, Randy, Chansky, Evan, Steinmeyer, Günter, Carbajo, Sergio

Controlling the carrier envelope phase (CEP) in mode-locked lasers over practically long timescales is crucial for real-world applications in ultrafast optics and precision metrology. We present a hybrid solution that combines a feed-forward technique to stabilize the phase offset in fast timescales and a feedback technique that addresses slowly varying sources of interference and locking bandwidth limitations associated with gain media with long upper-state lifetimes. We experimentally realize the hybrid stabilization system in an Er:Yb:glass mode-locked laser and demonstrate 75 hours of stabilization with integrated phase noise of 14 mrad (1 Hz to 3 MHz), corresponding to around 11 as of carrier to envelope jitter. Additionally, we examine the impact of environmental factors, such as humidity and pressure, on the long-term stability and performance of the system. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Loading...
Thumbnail Image
Item

Space-time focusing and coherence properties of supercontinua in multipass cells

2021, Mei, Chao, Steinmeyer, Günter

The situation of self-compression and concomitant supercontinuum generation in a multipass cell is analyzed in numerical simulations. This study focuses on multipass cells that contain a dielectric slab as nonlinear medium and overcompensate the dispersion of the slab with intracavity dispersive coatings. A 2D+1 unidirectional pulse propagation equation is utilized to simulate the pulse evolution through successive passes. We observe a previously unreported effect of space-time focusing, leading to a pronounced blue shift, similar to what had been observed in filament compression experiments before. This effect competes with detrimental pulse breakup, which can nevertheless be mitigated under suitable choice of cavity parameters. We further analyze resulting coherence properties, in both the time and frequency domains. Our analysis shows highly favorable properties of multipass cell compression schemes when nonlinearity and dispersion are distributed over as many cavity passes as possible. This quasicontinuous approach is particularly promising for spectral broadening schemes that allow for stabilization of the carrier-envelope phase.

Loading...
Thumbnail Image
Item

Ocean rogue waves and their phase space dynamics in the limit of a linear interference model

2016, Birkholz, Simon, Brée, Carsten, Veselić, Ivan, Demircan, Ayhan, Steinmeyer, Günter

We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.

Loading...
Thumbnail Image
Item

All-optical supercontinuum switching

2020, Melchert, Oliver, Brée, Carsten, Tajalli, Ayhan, Pape, Alexander, Arkhipov, Rostislav, Willms, Stephanie, Babushkin, Ihar, Skryabin, Dmitry, Steinmeyer, Günter, Morgner, Uwe, Demircan, Ayhan

Efficient all-optical switching is a challenging task as photons are bosons and cannot immediately interact with each other. Consequently, one has to resort to nonlinear optical interactions, with the Kerr gate being the classical example. However, the latter requires strong pulses to switch weaker ones. Numerous approaches have been investigated to overcome the resulting lack of fan-out capability of all-optical switches, most of which relied on types of resonant enhancement of light-matter interaction. Here we experimentally demonstrate a novel approach that utilizes switching between different portions of soliton fission induced supercontinua, exploiting an optical event horizon. This concept enables a high switching efficiency and contrast in a dissipation free setting. Our approach enables fan-out, does not require critical biasing, and is at least partially cascadable. Controlling complex soliton dynamics paves the way towards building all-optical logic gates with advanced functionalities. © 2020, The Author(s).