Search Results

Now showing 1 - 9 of 9
  • Item
    Curating Scientific Information in Knowledge Infrastructures
    (Paris : CODATA, 2018) Stocker, Markus; Paasonen, Pauli; Fiebig, Markus; Zaidan, Martha A.; Hardisty, Alex
    Interpreting observational data is a fundamental task in the sciences, specifically in earth and environmental science where observational data are increasingly acquired, curated, and published systematically by environmental research infrastructures. Typically subject to substantial processing, observational data are used by research communities, their research groups and individual scientists, who interpret such primary data for their meaning in the context of research investigations. The result of interpretation is information—meaningful secondary or derived data—about the observed environment. Research infrastructures and research communities are thus essential to evolving uninterpreted observational data to information. In digital form, the classical bearer of information are the commonly known “(elaborated) data products,” for instance maps. In such form, meaning is generally implicit e.g., in map colour coding, and thus largely inaccessible to machines. The systematic acquisition, curation, possible publishing and further processing of information gained in observational data interpretation—as machine readable data and their machine readable meaning—is not common practice among environmental research infrastructures. For a use case in aerosol science, we elucidate these problems and present a Jupyter based prototype infrastructure that exploits a machine learning approach to interpretation and could support a research community in interpreting observational data and, more importantly, in curating and further using resulting information about a studied natural phenomenon.
  • Item
    FAIR Convergence Matrix: Optimizing the Reuse of Existing FAIR-Related Resources
    (Cambridge, MA : MIT Press, 2020) Sustkova, Hana Pergl; Hettne, Kristina Maria; Wittenburg, Peter; Jacobsen, Annika; Kuhn, Tobias; Pergl, Robert; Slifka, Jan; McQuilton, Peter; Magagna, Barbara; Sansone, Susanna-Assunta; Stocker, Markus; Imming, Melanie; Lannom, Larry; Musen, Mark; Schultes, Erik
    The FAIR principles articulate the behaviors expected from digital artifacts that are Findable, Accessible, Interoperable and Reusable by machines and by people. Although by now widely accepted, the FAIR Principles by design do not explicitly consider actual implementation choices enabling FAIR behaviors. As different communities have their own, often well-established implementation preferences and priorities for data reuse, coordinating a broadly accepted, widely used FAIR implementation approach remains a global challenge. In an effort to accelerate broad community convergence on FAIR implementation options, the GO FAIR community has launched the development of the FAIR Convergence Matrix. The Matrix is a platform that compiles for any community of practice, an inventory of their self-declared FAIR implementation choices and challenges. The Convergence Matrix is itself a FAIR resource, openly available, and encourages voluntary participation by any self-identified community of practice (not only the GO FAIR Implementation Networks). Based on patterns of use and reuse of existing resources, the Convergence Matrix supports the transparent derivation of strategies that optimally coordinate convergence on standards and technologies in the emerging Internet of FAIR Data and Services.
  • Item
    Information extraction pipelines for knowledge graphs
    (London : Springer, 2023) Jaradeh, Mohamad Yaser; Singh, Kuldeep; Stocker, Markus; Both, Andreas; Auer, Sören
    In the last decade, a large number of knowledge graph (KG) completion approaches were proposed. Albeit effective, these efforts are disjoint, and their collective strengths and weaknesses in effective KG completion have not been studied in the literature. We extend Plumber, a framework that brings together the research community’s disjoint efforts on KG completion. We include more components into the architecture of Plumber to comprise 40 reusable components for various KG completion subtasks, such as coreference resolution, entity linking, and relation extraction. Using these components, Plumber dynamically generates suitable knowledge extraction pipelines and offers overall 432 distinct pipelines. We study the optimization problem of choosing optimal pipelines based on input sentences. To do so, we train a transformer-based classification model that extracts contextual embeddings from the input and finds an appropriate pipeline. We study the efficacy of Plumber for extracting the KG triples using standard datasets over three KGs: DBpedia, Wikidata, and Open Research Knowledge Graph. Our results demonstrate the effectiveness of Plumber in dynamically generating KG completion pipelines, outperforming all baselines agnostic of the underlying KG. Furthermore, we provide an analysis of collective failure cases, study the similarities and synergies among integrated components and discuss their limitations.
  • Item
    Analysing the requirements for an Open Research Knowledge Graph: use cases, quality requirements, and construction strategies
    (Berlin ; Heidelberg ; New York : Springer, 2021) Brack, Arthur; Hoppe, Anett; Stocker, Markus; Auer, Sören; Ewerth, Ralph
    Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KG) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective and present a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting and reviewing daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications, and outline possible solutions.
  • Item
    Persistent Identification Of Instruments
    (Ithaka : Cornell University, 2020) Stocker, Markus; Darroch, Louise; Krahl, Rolf; Habermann, Ted; Devaraju, Anusuriya; Schwardmann, Ulrich; D'Onofrio, Claudio; Häggström, Ingemar
    Instruments play an essential role in creating research data. Given the importance of instruments and associated metadata to the assessment of data quality and data reuse, globally unique, persistent and resolvable identification of instruments is crucial. The Research Data Alliance Working Group Persistent Identification of Instruments (PIDINST) developed a community-driven solution for persistent identification of instruments which we present and discuss in this paper. Based on an analysis of 10 use cases, PIDINST developed a metadata schema and prototyped schema implementation with DataCite and ePIC as representative persistent identifier infrastructures and with HZB (Helmholtz-Zentrum Berlin für Materialien und Energie) and BODC (British Oceanographic Data Centre) as representative institutional instrument providers. These implementations demonstrate the viability of the proposed solution in practice. Moving forward, PIDINST will further catalyse adoption and consolidate the schema by addressing new stakeholder requirements.
  • Item
    A Scholarly Knowledge Graph-Powered Dashboard: Implementation and User Evaluation
    (Lausanne : Frontiers Media, 2022) Lezhnina, Olga; Kismihók, Gábor; Prinz, Manuel; Stocker, Markus; Auer, Sören
    Scholarly knowledge graphs provide researchers with a novel modality of information retrieval, and their wider use in academia is beneficial for the digitalization of published works and the development of scholarly communication. To increase the acceptance of scholarly knowledge graphs, we present a dashboard, which visualizes the research contributions on an educational science topic in the frame of the Open Research Knowledge Graph (ORKG). As dashboards are created at the intersection of computer science, graphic design, and human-technology interaction, we used these three perspectives to develop a multi-relational visualization tool aimed at improving the user experience. According to preliminary results of the user evaluation survey, the dashboard was perceived as more appealing than the baseline ORKG-powered interface. Our findings can be used for the development of scholarly knowledge graph-powered dashboards in different domains, thus facilitating acceptance of these novel instruments by research communities and increasing versatility in scholarly communication.
  • Item
    Integrating data and analysis technologies within leading environmental research infrastructures: Challenges and approaches
    (Amsterdam [u.a.] : Elsevier, 2021) Huber, Robert; D'Onofrio, Claudio; Devaraju, Anusuriya; Klump, Jens; Loescher, Henry W.; Kindermann, Stephan; Guru, Siddeswara; Grant, Mark; Morris, Beryl; Wyborn, Lesley; Evans, Ben; Goldfarb, Doron; Genazzio, Melissa A.; Ren, Xiaoli; Magagna, Barbara; Thiemann, Hannes; Stocker, Markus
    When researchers analyze data, it typically requires significant effort in data preparation to make the data analysis ready. This often involves cleaning, pre-processing, harmonizing, or integrating data from one or multiple sources and placing them into a computational environment in a form suitable for analysis. Research infrastructures and their data repositories host data and make them available to researchers, but rarely offer a computational environment for data analysis. Published data are often persistently identified, but such identifiers resolve onto landing pages that must be (manually) navigated to identify how data are accessed. This navigation is typically challenging or impossible for machines. This paper surveys existing approaches for improving environmental data access to facilitate more rapid data analyses in computational environments, and thus contribute to a more seamless integration of data and analysis. By analysing current state-of-the-art approaches and solutions being implemented by world‑leading environmental research infrastructures, we highlight the existing practices to interface data repositories with computational environments and the challenges moving forward. We found that while the level of standardization has improved during recent years, it still is challenging for machines to discover and access data based on persistent identifiers. This is problematic in regard to the emerging requirements for FAIR (Findable, Accessible, Interoperable, and Reusable) data, in general, and problematic for seamless integration of data and analysis, in particular. There are a number of promising approaches that would improve the state-of-the-art. A key approach presented here involves software libraries that streamline reading data and metadata into computational environments. We describe this approach in detail for two research infrastructures. We argue that the development and maintenance of specialized libraries for each RI and a range of programming languages used in data analysis does not scale well. Based on this observation, we propose a set of established standards and web practices that, if implemented by environmental research infrastructures, will enable the development of RI and programming language independent software libraries with much reduced effort required for library implementation and maintenance as well as considerably lower learning requirements on users. To catalyse such advancement, we propose a roadmap and key action points for technology harmonization among RIs that we argue will build the foundation for efficient and effective integration of data and analysis.
  • Item
    ORKG: Facilitating the Transfer of Research Results with the Open Research Knowledge Graph
    (Sofia : Pensoft, 2021) Auer, Sören; Stocker, Markus; Vogt, Lars; Fraumann, Grischa; Garatzogianni, Alexandra
    This document is an edited version of the original funding proposal entitled 'ORKG: Facilitating the Transfer of Research Results with the Open Research Knowledge Graph' that was submitted to the European Research Council (ERC) Proof of Concept (PoC) Grant in September 2020 (https://erc.europa.eu/funding/proof-concept). The proposal was evaluated by five reviewers and has been placed after the evaluations on the reserve list. The main document of the original proposal did not contain an abstract.
  • Item
    The SciQA Scientific Question Answering Benchmark for Scholarly Knowledge
    (London : Nature Publishing Group, 2023) Auer, Sören; Barone, Dante A.C.; Bartz, Cassiano; Cortes, Eduardo G.; Jaradeh, Mohamad Yaser; Karras, Oliver; Koubarakis, Manolis; Mouromtsev, Dmitry; Pliukhin, Dmitrii; Radyush, Daniil; Shilin, Ivan; Stocker, Markus; Tsalapati, Eleni
    Knowledge graphs have gained increasing popularity in the last decade in science and technology. However, knowledge graphs are currently relatively simple to moderate semantic structures that are mainly a collection of factual statements. Question answering (QA) benchmarks and systems were so far mainly geared towards encyclopedic knowledge graphs such as DBpedia and Wikidata. We present SciQA a scientific QA benchmark for scholarly knowledge. The benchmark leverages the Open Research Knowledge Graph (ORKG) which includes almost 170,000 resources describing research contributions of almost 15,000 scholarly articles from 709 research fields. Following a bottom-up methodology, we first manually developed a set of 100 complex questions that can be answered using this knowledge graph. Furthermore, we devised eight question templates with which we automatically generated further 2465 questions, that can also be answered with the ORKG. The questions cover a range of research fields and question types and are translated into corresponding SPARQL queries over the ORKG. Based on two preliminary evaluations, we show that the resulting SciQA benchmark represents a challenging task for next-generation QA systems. This task is part of the open competitions at the 22nd International Semantic Web Conference 2023 as the Scholarly Question Answering over Linked Data (QALD) Challenge.