Search Results

Now showing 1 - 2 of 2
  • Item
    Variation of Ice Nucleating Particles in the European Arctic Over the Last Centuries
    (Hoboken, NJ [u.a.] : Wiley, 2019) Hartmann, M.; Blunier, T.; Brügger, S.O.; Schmale, J.; Schwikowski, M.; Vogel, A.; Wex, H.; Stratmann, F.
    The historical development of ice nucleating particle concentrations (NINP) is still unknown. Here, we present for the first time NINP from the past 500 years at two Arctic sites derived from ice core samples. The samples originate from the EUROCORE ice core (Summit, Central Greenland) and from the Lomo09 ice core (Lomonosovfonna, Svalbard). No long-term trend is obvious in the measured samples, and the overall range of NINP is comparable to present-day observations. We observe that the short-term variations in NINP is larger than the long-term variability, but neither anthropogenic pollution nor volcanic eruptions seem to have influenced NINP in the measured temperature range. Shape and onset temperature of several INP spectra suggest that INP of biogenic origin contributed to the Arctic INP population throughout the past. ©2019. The Authors.
  • Item
    Wintertime Airborne Measurements of Ice Nucleating Particles in the High Arctic: A Hint to a Marine, Biogenic Source for Ice Nucleating Particles
    (Hoboken, NJ [u.a.] : Wiley, 2020) Hartmann, M.; Adachi, K.; Eppers, O.; Haas, C.; Herber, A.; Holzinger, R.; Hünerbein, A.; Jäkel, E.; Jentzsch, C.; van Pinxteren, M.; Wex, H.; Willmes, S.; Stratmann, F.
    Ice nucleating particles (INPs) affect the radiative properties of cold clouds. Knowledge concerning their concentration above ground level and their potential sources is scarce. Here we present the first highly temperature resolved ice nucleation spectra of airborne samples from an aircraft campaign during late winter in 2018. Most INP spectra featured low concentration levels (<3 · 10−4 L−1 at −15°C). However, we also found INP concentrations of up to 1.8·10−2 L−1 at −15°C and freezing onsets as high as −7.5°C for samples mainly from the marine boundary layer. Shape and onset temperature of the ice nucleation spectra of those samples as well as heat sensitivity hint at biogenic INP. Colocated measurements additionally indicate a local marine influence rather than long-range transport. Our results suggest that even in late winter above 80°N a local marine source for biogenic INP, which can efficiently nucleate ice at high temperatures, is present. ©2020. The Authors.