Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

Photo-Cross-Linked Dual-Responsive Hollow Capsules Mimicking Cell Membrane for Controllable Cargo Post-Encapsulation and Release

2016, Liu, Xiaoling, Appelhans, Dietmar, Wei, Qiang, Voit, Brigitte

Multifunctional and responsive hollow capsules are ideal candidates to establish highly sophisticated compartments mimicking cell membranes for controllable bio-inspired functions. For this purpose pH and temperature dual-responsive and photo-cross-linked hollow capsules, based on silica-templated layer-by-layer approach by using poly(N-isopropyl acrylamide)-blockpolymethacrylate) and polyallylamine, have been prepared to use them for the subsequent and easily available post-encapsulation process of proteinlike macromolecules at room temperature and pH 7.4 and their controllable release triggered by stimuli. The uptake and release properties of the hollow capsules for cargos are highly affected by changes in the external stimuli temperature (25, 37, or 45 °C) and internal stimuli pH of the phosphate-containing buffer solution (5.5 or 7.4), by the degree of photo-cross-linking, and the size of cargo. The photo-cross-linked and dual stimuli-responsive hollow capsules with different membrane permeability can be considered as attractive material for mimicking cell functions triggered by controllable uptake and release of different up to 11 nm sized biomolecules.

Loading...
Thumbnail Image
Item

Sugar-Modified Poly(propylene imine) Dendrimers Stimulate the NF-κB Pathway in a Myeloid Cell Line

2016, Jatczak-Pawlik, Izabela, Gorzkiewicz, Michal, Studzian, Maciej, Appelhans, Dietmar, Voit, Brigitte, Pulaski, Lukasz, Klajnert-Maculewicz, Barbara

Purpose: Fourth-generation poly(propylene imine) dendrimers fully surface-modified by maltose (dense shell, PPI-m DS) were shown to be biocompatible in cellular models, which is important for their application in drug delivery. We decided to verify also their inherent bioactivity, including immunomodulatory activity, for potential clinical applications. We tested their effects on the THP-1 monocytic cell line model of innate immunity effectors. Methods: To estimate the cytotoxicity of dendrimers the reasazurin assay was performed. The expression level of NF-κB targets: IGFBP3, TNFAIP3 and TNF was determined by quantitative real-time RT-PCR. Measurement of NF-κB p65 translocation from cytoplasm to nucleus was conducted with a high-content screening platform and binding of NF-κB to a consensus DNA probe was determined by electrophoretic mobility shift assay. The cytokine assay was performed to measure protein concentration of TNFalpha and IL-4. Results: We found that PPI-m DS did not impact THP-1 viability and growth even at high concentrations (up to 100 μM). They also did not induce expression of genes for important signaling pathways: Jak/STAT, Keap1/Nrf2 and ER stress. However, high concentrations of 4th generation PPI-m DS (25–100 μM), but not their 3rd generation counterparts, induced nuclear translocation of p65 NF-κB protein and its DNA-binding activity, leading to NF-κB-dependent increased expression of mRNA for NF-κB targets: IGFBP3, TNFAIP3 and TNF. However, no increase in pro-inflammatory cytokine secretion was detected. Conclusion: We conclude that maltose-modified PPI dendrimers of specific size could exert a modest immunomodulatory effect, which may be advantageous in clinical applications (e.g. adjuvant effect in anti-cancer vaccines).

Loading...
Thumbnail Image
Item

Dispersability of multiwalled carbon nanotubes in polycarbonate-chloroform solutions

2014, Staudinger, Ulrike, Krause, Beate, Steinbach, Christine, Pötschke, Petra, Voit, Brigitte

The dispersion of commercial multiwalled carbon nanotubes (MWCNTs, Nanocyl™ NC7000) in chloroform and in polycarbonate (PC)-chloroform solutions was investigated by variation of the polymer concentration, MWCNT amount and sonication time and compared with PC/MWCNT composites, which were processed by melt mixing, subsequently dissolved in chloroform and dispersed via sonication under the same conditions. The sedimentation behaviour was characterised under centrifugal forces using a LUMiSizer® separation analyser. The space and time resolved extinction profiles as a measure of the stability of the dispersion and the particle size distribution were evaluated. Sonication up to 5 min gradually increases the amount of dispersed particles in the solutions. A significant improvement of the MWCNT dispersion in chloroform was achieved by the addition of PC indicating the mechanism of polymer chain wrapping around the MWCNTs. In dispersions of melt mixed PC/MWCNT composites the dispersion of MWCNTs is significantly enhanced already at a low sonication time of only 0.5 min due to very efficient polymer wrapping during the melt mixing process. However, the best dispersion quality does not lead to the highest electrical conductivity of thin composite films made of these PC/MWCNT dispersions.

Loading...
Thumbnail Image
Item

Tuning the Properties and Self-Healing Behavior of Ionically Modified Poly(isobutylene-co-isoprene) Rubber

2017, Suckow, Marcus, Mordvinkin, Anton, Roy, Manta, Singha, Nikhil K., Heinrich, Gert, Voit, Brigitte, Saalwächter, Kay, Böhme, Frank

The focus of this work is on the nature of self-healing of ionically modified rubbers obtained by reaction of brominated poly(isobutylene-co-isoprene) rubber (BIIR) with various alkylimidazoles such as 1-methylimidazole, 1-butylimidazole, 1-hexylimidazole, 1-nonylimidazole, and 1-(6-chlorohexyl)-1H-imidazole. Based on stress-strain and temperature dependent DMA measurements, a structural influence of the introduced ionic imidazolium moieties on the formation of ionic clusters and, as a consequence, on the mechanical strength and self-healing behavior of the samples could be evidenced. These results are fully supported by a molecular-level assessment of the network structure (cross-link and constraint density) and the dynamics of the ionic clusters using an advanced proton low-field NMR technique. The results show distinct correlations between the macroscopic behavior and molecular chain dynamics of the modified rubbers. In particular, it is shown that the optimization of material properties with regard to mechanical and self-healing behavior is limited by opposing tendencies. Samples with reduced chain dynamics exhibit superior mechanical behavior but lack on self-healing behavior. In spite of these limitations, the overall performance of some of our samples including self-healing behavior exceeds distinctly that of other self-healing rubbers described in the literature so far.

Loading...
Thumbnail Image
Item

Interfacial chemistry using a bifunctional coupling agent for enhanced electrical properties of carbon nanotube based composites

2013, Socher, Robert, Jakisch, Lothar, Krause, Beate, Oertel, Ulrich, Voit, Brigitte, Pötschke, Petra

A bifunctional coupling agent (BCA) containing one oxazoline and one benzoxazinone group was applied to promote a reaction between polyamide 12 (PA12) and multiwalled carbon nanotubes (MWCNTs) during melt mixing. With this modification, the MWCNT content needed for the electrical percolation was significantly reduced by more than a factor of three. For amino functionalized MWCNT-PA12 composites adding 1 wt.% BCA electrical percolation was reached at only 0.37 wt.% MWCNTs compared to 1.0 wt.% without BCA. With the help of a model reaction, the covalent attachment of the BCA to the MWCNTs could be shown by thermogravimetric analysis (TGA) and via fluorescence spectroscopy. Model compounds were applied containing either only the oxazoline or the benzoxazinone group to show that the better electrical properties in the PA12-MWCNT composites were a result of a covalent bond between the polymer and the nanotube which only takes place when the BCA was used. In addition, significantly higher electrical conductivity values were obtained by the addition of BCA as well with amino functionalized as with nonmodified commercial MWCNTs. This surprising result was attributed to the significant hydroxy group content on the surface of those commercial MWCNTs. © 2013 Elsevier Ltd. All rights reserved.

Loading...
Thumbnail Image
Item

Influence of different carbon nanotubes on the electrical and mechanical properties of melt mixed poly(ether sulfone)-multi walled carbon nanotube composites

2012, Chakraborty, Sourav, Pionteck, Jürgen, Krause, Beate, Banerjee, Susanta, Voit, Brigitte

Commercial Udel® poly(ether sulfone) (PSU) was filled with three different commercially available multiwalled carbon nanotubes (MWCNTs) by small scale melt mixing. The MWCNTs were as grown NC 7000 and two of its derivatives prepared by ball milling treatment. One of them was unmodified (NC 3150); the other was amino modified (NC 3152). The main difference beside the reactivity was the reduced aspect ratio of NC 3150 and NC 3152 caused by ball milling process. All PSU/MWCNT composites with similar filler content were prepared under fixed processing conditions and comparative analysis of their electrical and mechanical properties were performed and were correlated with their microstructure, characterized by optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A non-uniform MWCNT dispersion was observed in all composites. The MWCNTs were present in form of agglomerates in the size of 10-60. μm whereas the deagglomerated part was homogeneously distributed in the PSU matrix. The differences in the agglomeration states correlate with the variations of properties between different PSU/MWCNT composites. The lowest electrical percolation threshold of 0.25-0.5. wt.% was observed for the shortened non-functionalized MWCNT composites and the highest for amine-modified MWCNT composites (ca. 1.5. wt.%). The tensile behavior of the three composites was only slightly altered with CNT loading as compared to the pure PSU. However, the elongation at break showed a reduction with MWCNT loading and the reduction was least for composite with best MWCNT dispersion. © 2012 Elsevier Ltd.

Loading...
Thumbnail Image
Item

Conjugated Polymers as a New Class of Dual-Mode Matrices for MALDI Mass Spectrometry and Imaging

2018, Horatz, Kilian, Giampà, Marco, Karpov, Yevhen, Sahre, Karin, Bednarz, Hanna, Kiriy, Anton, Voit, Brigitte, Niehaus, Karsten, Hadjichristidis, Nikos, Michels, Dominik L., Lissel, Franziska

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and MALDI MS imaging are ubiquitous analytical methods in medical, pharmaceutical, biological, and environmental research. Currently, there is a strong interest in the investigation of low molecular weight compounds (LMWCs), especially to trace and understand metabolic pathways, requiring the development of new matrix systems that have favorable optical properties and a high ionization efficiency and that are MALDI silent in the LMWC area. In this paper, five conjugated polymers, poly{[N,N'-bis(2-octyldodecyl)-naphtalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'(2,2'-bithiophene)} (PNDI(T2)), poly(3-dodecylthiophene-2,5-diyl) (P3DDT), poly{[2,3-bis(3-octyloxyphenyl)quinoxaline-5,8-diyl]-alt-(thiophene-2,5-diyl)} (PTQ1), poly{[N,N'-bis(2-octyldodecyl)-isoindigo-5,5'-diyl]-alt-5,5'(2,2'-bithiophene)} (PII(T2)), and poly(9,9-di-n-octylfluorenyl-2,7-diyl) (P9OFl) are investigated as matrices. The polymers have a strong optical absorption, are solution processable, and can be coated into thin films, allowing a vast reduction in the amount of matrix used. All investigated polymers function as matrices in both positive and negative mode MALDI, classifying them as rare dual-mode matrices, and show a very good analyte ionization ability in both modes. PNDI(T2), P3DDT, PTQ1, and PII(T2) are MALDI silent in the full measurement range (>m/z = 150k), except at high laser intensities. In MALDI MS experiments of single analytes and a complex biological sample, the performance of the polymers was found to be as good as two commonly used matrices (2,5-DHB for positive and 9AA for negative mode measurements). The detection limit of two standard analytes was determined as being below 164 pmol for reserpine and below 245 pmol for cholic acid. Additionally P3DDT was used successfully in first MALDI MS imaging experiments allowing the visualization of the tissue morphology of rat brain sections.

Loading...
Thumbnail Image
Item

Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol

2017, Luo, Jinji, Cerretti, Giacomo, Krause, Beate, Zhang, Long, Otto, Thomas, Jenschke, Wolfgang, Ullrich, Mathias, Tremel, Wolfgang, Voit, Brigitte, Pötschke, Petra

The thermoelectric properties of melt processed conductive nanocomposites consisting of an insulating polypropylene (PP) matrix filled with singlewalled carbon nanotubes (CNTs) and copper oxide (CuO) were evaluated. An easy and cheap route to switch p-type composites into n-type was developed by adding polyethylene glycol (PEG) during melt mixing. At the investigated CNT concentrations of 0.8 wt% and 2 wt% (each above the electrical percolation threshold of ∼0.1 wt%), and a fixed CuO content of 5 wt%, the PEG addition converted p-type composites (positive Seebeck coefficient (S)) into n-type (negative S). PEG was also found to improve the filler dispersion inside the matrix. Two composites were prepared: P-type polymer/CNT composites with high S (up to 45 μV/K), and n-type composites (with S up to −56 μV/K) through the addition of PEG. Two prototypes with 4 and 49 thermocouples of these p- and n-type composites were fabricated, and delivered an output voltage of 21 mV and 110 mV, respectively, at a temperature gradient of 70 K.

Loading...
Thumbnail Image
Item

Reconstitution properties of biologically active polymersomes after cryogenic freezing and a freeze-drying process

2018, Ccorahua, Robert, Moreno, Silvia, Gumz, Hannes, Sahre, Karin, Voit, Brigitte, Appelhans, Dietmar

Reconstitution of biologically active polymersomes from the frozen or solid state into any fluid state is still a challenging issue for the design of new biological experiments and for the formulation of therapeutic agents. To gain knowledge about the reconstitution of pH-responsive and photo-crosslinked polymersomes, surface-functionalized and enzyme-containing polymersomers were cryogenically frozen (-20 °C) or freeze-dried with inulin as the lyoprotectant (0.1% w/v) and stored for a defined time period. Reconstituting those polymersomes in solution by thawing or a re-dispersing process revealed their original physical properties as well as their function as a pH-switchable enzymatic nanoreactor.