Search Results

Now showing 1 - 2 of 2
  • Item
    Chemical Bonded PA66-PTFE-Oil Composites as Novel Tribologically Effective Materials: Part 2
    (London [u.a.] : Institute of Physics, 2021) Nguyen, Thanh-Duong; Kamga, Lionel Simo; Gedan-Smolka, Michaela; Sauer, Bernd; Emrich, Stefan; Kopnarski, Michael; Voit, Brigitte; Karjust, Krist; Otto, Tauno; Kübarsepp, Jakob; Hussainova, Irina
    Polytetrafluoroethylene (PTFE) exhibits excellent non-stick properties and a very low coefficient of friction under tribological stress, but it is incompatible with almost all other polymers. In the first part of this study we presented the generation of the novel tribological material based on unsaturated oil, radiation-modified PTFE (MP1100) and Polyamide 66 (PA66). To get a better understanding of the chemical properties and chemical composition of the compounds, the PA66-MP1100-oil-cb (chemical bonded) compounds were examined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). In this part, the mechanical properties of the compounds are compared with plain PA66 and PA66-MP1100-cb. The tribological investigation was carried out using the Block-on-Ring tribometer. It was found that the mechanical properties of PA66-MP1100-oil-cb with 20 wt.% MP1100-oil-cb only show slight differences compared to PA66, but the tribological properties of the compounds have been significantly improved through chemical coupling between the three components. Finally, the amount of the compound that was deposited on the surface of the steel disc counterpart was analyzed after the tribological testing.
  • Item
    Self-Replication of Deeply Buried Doped Silicon Structures, which Remotely Control the Etching Process: A New Method for Forming a Silicon Pattern from the Bottom Up
    (Weinheim : Wiley-VCH, 2021) Schutzeichel, Christopher; Kiriy, Nataliya; Kiriy, Anton; Voit, Brigitte
    A typical microstructuring process utilizes photolithographic masks to create arbitrary patterns on silicon substrates in a top-down approach. Herein, a new, bottom-up microstructuring method is reported, which enables the patterning of n-doped silicon substrates to be performed without the need for application of etch-masks or stencils during the etching process. Instead, the structuring process developed herein involves a simple alkaline etching performed under illumination and is remotely controlled by the p-doped micro-sized implants, buried beneath a homogeneous n-doped layer at depths of 0.25 to 1 Âµm. The microstructuring is realized because the buried implants act upon illumination as micro-sized photovoltaic cells, which generate a flux of electrons and increase the negative surface charge in areas above the implants. The locally increased surface charge causes a local protection of the native silicon oxide layer from alkaline etching, which ultimately leads to the microstructuring of the substrate. In this way, substrates having at their top a thick layer of homogeneously n-doped silicon can be structured, reducing the need for costly, time-consuming photolithography steps. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH