Search Results

Now showing 1 - 9 of 9
  • Item
    Semi-Interpenetrating Polymer Networks Based on N-isopropylacrylamide and 2-acrylamido-2-methylpropane Sulfonic Acid for Intramolecular Force-Compensated Sensors
    (Bristol : IOP Publishing, 2021) Binder, Simon; Zschoche, Stefan; Voit, Brigitte; Gerlach, Gerald
    Stimulus-responsive hydrogels are swellable polymers that take up a specific volume depending on a measured variable present in solution. Hydrogel-based chemical sensors make use of this ability by converting the resulting swelling pressure, which depends on the measured variable, into an electrical value. Due to the tedious swelling processes, the measuring method of intramolecular force compensation is used to suppress these swelling processes and, thus, significantly increase the sensor's response time. However, intramolecular force compensation requires a bisensitive hydrogel. In addition to the sensitivity of the measured variable the gel has to provide a second sensitivity for intrinsic compensation of the swelling pressure. At the same time, this hydrogel has to meet further requirements, e.g. high compressive strength. Until now, interpenetrating polymer networks (IPN) have been used for such a force-compensatory effective hydrogel, which are complex to manufacture. In order to significantly simplify the sensor design and production, a simpler synthesis of the bisensitive hydrogel is desirable. This paper presents a new bisensitive hydrogel based on semi-interpenetrating polymer networks. It is based on a copolymer network consisting of N-isopropylacrylamide (NiPAAm) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and long PAMPS strands that permeate it. Measurements show, that this hydrogel meets all essential requirements for intramolecular force compensation and is at the same time much easier to synthesize than previously used IPN hydrogels. © 2021 The Author(s).
  • Item
    Long-Term Retarded Release for the Proteasome Inhibitor Bortezomib through Temperature-Sensitive Dendritic Glycopolymers as Drug Delivery System from Calcium Phosphate Bone Cement
    (Weinheim : Wiley-VCH, 2021) Lai, Thu Hang; Keperscha, Bettina; Qiu, Xianping; Voit, Brigitte; Appelhans, Dietmar
    For the local treatment of bone defects, highly adaptable macromolecular architectures are still required as drug delivery system (DDS) in solid bone substitute materials. Novel DDS fabricated by host–guest interactions between β-cyclodextrin-modified dendritic glycopolymers and adamantane-modified temperature-sensitive polymers for the proteasome inhibitor bortezomib (BZM) is presented. These DDS induce a short- and long-term (up to two weeks) retarded release of BZM from calcium phosphate bone cement (CPC) in comparison to a burst release of the drug alone. Different release parameters of BZM/DDS/CPC are evaluated in phosphate buffer at 37 °C to further improve the long-term retarded release of BZM. This is achieved by increasing the amount of drug (50–100 µg) and/or DDS (100–400 µg) versus CPC (1 g), by adapting the complexes better to the porous bone cement environment, and by applying molar ratios of excess BZM toward DDS with 1:10, 1:25, and 1:100. The temperature-sensitive polymer shells of BZM/DDS complexes in CPC, which allow drug loading at room temperature but are collapsed at body temperature, support the retarding long-term release of BZM from DDS/CPC. Thus, the concept of temperature-sensitive DDS for BZM/DDS complexes in CPC works and matches key points for a local therapy of osteolytic bone lesions.
  • Item
    Multivalent Protein-Loaded pH-Stable Polymersomes: First Step toward Protein Targeted Therapeutics
    (Weinheim : Wiley-VCH, 2021) Moreno, Silvia; Boye, Susanne; Ajeilat, Hane George Al; Michen, Susanne; Tietze, Stefanie; Voit, Brigitte; Lederer, Albena; Temme, Achim; Appelhans, Dietmar
    Synthetic platforms for mimicking artificial organelles or for designing multivalent protein therapeutics for targeting cell surface, extracellular matrix, and tissues are in the focus of this study. Furthermore, the availability of a multi-functionalized and stimuli-responsive carrier system is required that can be used for sequential in situ and/or post loading of different proteins combined with post-functionalization steps. Until now, polymersomes exhibit excellent key characteristics to fulfill those requirements, which allow specific transport of proteins and the integration of proteins in different locations of polymeric vesicles. Herein, different approaches to fabricate multivalent protein-loaded, pH-responsive, and pH-stable polymersomes are shown, where a combination of therapeutic action and targeting can be achieved, by first choosing two model proteins such as human serum albumin and avidin. Validation of the molecular parameters of the multivalent biohybrids is performed by dynamic light scattering, cryo-TEM, fluorescence spectroscopy, and asymmetrical flow-field flow fractionation combined with light scattering techniques. To demonstrate targeting functions of protein-loaded polymersomes, avidin post-functionalized polymersomes are used for the molecular recognition of biotinylated cell surface receptors. These versatile protein-loaded polymersomes present new opportunities for designing sophisticated biomolecular nanoobjects in the field of (extracellular matrix) protein therapeutics.
  • Item
    Matrix metalloproteinase-1 decorated polymersomes, a surface-active extracellular matrix therapeutic, potentiates collagen degradation and attenuates early liver fibrosis
    (New York, NY [u.a.] : Elsevier, 2021) Geervliet, Eline; Moreno, Silvia; Baiamonte, Luca; Booijink, Richell; Boye, Susanne; Wang, Peng; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar; Bansal, Ruchi
    Liver fibrosis affects millions of people worldwide and is rising vastly over the past decades. With no viable therapies available, liver transplantation is the only curative treatment for advanced diseased patients. Excessive accumulation of aberrant extracellular matrix (ECM) proteins, mostly collagens, produced by activated hepatic stellate cells (HSCs), is a hallmark of liver fibrosis. Several studies have suggested an inverse correlation between collagen-I degrading matrix metalloproteinase-1 (MMP-1) serum levels and liver fibrosis progression highlighting reduced MMP-1 levels are associated with poor disease prognosis in patients with liver fibrosis. We hypothesized that delivery of MMP-1 might potentiate collagen degradation and attenuate fibrosis development. In this study, we report a novel approach for the delivery of MMP-1 using MMP-1 decorated polymersomes (MMPsomes), as a surface-active vesicle-based ECM therapeutic, for the treatment of liver fibrosis. The storage-stable and enzymatically active MMPsomes were fabricated by a post-loading of Psomes with MMP-1. MMPsomes were extensively characterized for the physicochemical properties, MMP-1 surface localization, stability, enzymatic activity, and biological effects. Dose-dependent effects of MMP-1, and effects of MMPsomes versus MMP-1, empty polymersomes (Psomes) and MMP-1 + Psomes on gene and protein expression of collagen-I, MMP-1/TIMP-1 ratio, migration and cell viability were examined in TGFβ-activated human HSCs. Finally, the therapeutic effects of MMPsomes, compared to MMP-1, were evaluated in vivo in carbon-tetrachloride (CCl4)-induced early liver fibrosis mouse model. MMPsomes exhibited favorable physicochemical properties, MMP-1 surface localization and improved therapeutic efficacy in TGFβ-activated human HSCs in vitro. In CCl4-induced early liver fibrosis mouse model, MMPsomes inhibited intra-hepatic collagen-I (ECM marker, indicating early liver fibrosis) and F4/80 (marker for macrophages, indicating liver inflammation) expression. In conclusion, our results demonstrate an innovative approach of MMP-1 delivery, using surface-decorated MMPsomes, for alleviating liver fibrosis.
  • Item
    Chemical Bonded PA66-PTFE-Oil Composites as Novel Tribologically Effective Materials: Part 2
    (London [u.a.] : Institute of Physics, 2021) Nguyen, Thanh-Duong; Kamga, Lionel Simo; Gedan-Smolka, Michaela; Sauer, Bernd; Emrich, Stefan; Kopnarski, Michael; Voit, Brigitte; Karjust, Krist; Otto, Tauno; Kübarsepp, Jakob; Hussainova, Irina
    Polytetrafluoroethylene (PTFE) exhibits excellent non-stick properties and a very low coefficient of friction under tribological stress, but it is incompatible with almost all other polymers. In the first part of this study we presented the generation of the novel tribological material based on unsaturated oil, radiation-modified PTFE (MP1100) and Polyamide 66 (PA66). To get a better understanding of the chemical properties and chemical composition of the compounds, the PA66-MP1100-oil-cb (chemical bonded) compounds were examined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). In this part, the mechanical properties of the compounds are compared with plain PA66 and PA66-MP1100-cb. The tribological investigation was carried out using the Block-on-Ring tribometer. It was found that the mechanical properties of PA66-MP1100-oil-cb with 20 wt.% MP1100-oil-cb only show slight differences compared to PA66, but the tribological properties of the compounds have been significantly improved through chemical coupling between the three components. Finally, the amount of the compound that was deposited on the surface of the steel disc counterpart was analyzed after the tribological testing.
  • Item
    Self-Replication of Deeply Buried Doped Silicon Structures, which Remotely Control the Etching Process: A New Method for Forming a Silicon Pattern from the Bottom Up
    (Weinheim : Wiley-VCH, 2021) Schutzeichel, Christopher; Kiriy, Nataliya; Kiriy, Anton; Voit, Brigitte
    A typical microstructuring process utilizes photolithographic masks to create arbitrary patterns on silicon substrates in a top-down approach. Herein, a new, bottom-up microstructuring method is reported, which enables the patterning of n-doped silicon substrates to be performed without the need for application of etch-masks or stencils during the etching process. Instead, the structuring process developed herein involves a simple alkaline etching performed under illumination and is remotely controlled by the p-doped micro-sized implants, buried beneath a homogeneous n-doped layer at depths of 0.25 to 1 Âµm. The microstructuring is realized because the buried implants act upon illumination as micro-sized photovoltaic cells, which generate a flux of electrons and increase the negative surface charge in areas above the implants. The locally increased surface charge causes a local protection of the native silicon oxide layer from alkaline etching, which ultimately leads to the microstructuring of the substrate. In this way, substrates having at their top a thick layer of homogeneously n-doped silicon can be structured, reducing the need for costly, time-consuming photolithography steps. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Charge Carrier Mobility Improvement in Diketopyrrolopyrrole Block-Copolymers by Shear Coating
    (Basel : MDPI, 2021) Ditte, Kristina; Kiriy, Nataliya; Perez, Jonathan; Hambsch, Mike; Mannsfeld, Stefan C.B.; Krupskaya, Yulia; Maragani, Ramesh; Voit, Brigitte; Lissel, Franziska
    Shear coating is a promising deposition method for upscaling device fabrication and enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing. Although common polymer semiconductors (PSCs) are solution processible, they are still prone to mechanical failure upon stretching, limiting applications in e.g., electronic skin and health monitoring. Progress made towards mechanically compliant PSCs, e.g., the incorporation of soft segments into the polymer backbone, could not only allow such applications, but also benefit advanced fabrication methods, like roll-to-roll printing on flexible substrates, to produce the targeted devices. Tri-block copolymers (TBCs), consisting of an inner rigid semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) block flanked by two soft elastomeric poly(dimethylsiloxane) (PDMS) chains, maintain good charge transport properties, while being mechanically soft and flexible. Potentially aiming at the fabrication of TBC-based wearable electronics by means of cost-efficient and scalable deposition methods (e.g., blade-coating), a tolerance of the electrical performance of the TBCs to the shear speed was investigated. Herein, we demonstrate that such TBCs can be deposited at high shear speeds (film formation up to a speed of 10 mm s−1). While such high speeds result in increased film thickness, no degradation of the electrical performance was observed, as was frequently reported for polymer−based OFETs. Instead, high shear speeds even led to a small improvement in the electrical performance: mobility increased from 0.06 cm2 V−1 s−1 at 0.5 mm s−1 to 0.16 cm2 V−1 s−1 at 7 mm s−1 for the TBC with 24 wt% PDMS, and for the TBC containing 37 wt% PDMS from 0.05 cm2 V−1 s−1 at 0.5 mm s−1 to 0.13 cm2 V−1 s−1 at 7 mm s−1. Interestingly, the improvement of mobility is not accompanied by any significant changes in morphology.
  • Item
    Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomes-in-Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation
    (Weinheim : Wiley-VCH, 2021) Wen, Ping; Wang, Xueyi; Moreno, Silvia; Boye, Susanne; Voigt, Dagmar; Voit, Brigitte; Huang, Xin; Appelhans, Dietmar
    The eukaryotic cell is a smart compartment containing an outer permeable membrane, a cytoskeleton, and functional organelles, presenting part structures for life. The integration of membrane-containing artificial organelles (=polymersomes) into a large microcompartment is a key step towards the establishment of exquisite cellular biomimetics with different membrane properties. Herein, an efficient way to construct a hierarchical multicompartment composed of a hydrogel-filled proteinosome hybrid structure with an outer homogeneous membrane, a smart cytoskeleton-like scaffold, and polymersomes is designed. Specially, this hybrid structure creates a micro-environment for pH-responsive polymersomes to execute a desired substance transport upon response to biological stimuli. Within the dynamic pH-stable skeleton of the protein hydrogels, polymersomes with loaded PEGylated insulin biomacromolecules demonstrate a pH-responsive reversible swelling-deswelling and a desirable, on-demand cargo release which is induced by the enzymatic oxidation of glucose to gluconic acid. This stimulus responsive behavior is realized by tunable on/off states through protonation of the polymersomes membrane under the enzymatic reaction of glucose oxidase, integrated in the skeleton of protein hydrogels. The integration of polymersomes-based hybrid structure into the proteinosome compartment and the stimuli-response on enzyme reactions fulfills the requirements of eukaryotic cell biomimetics in complex architectures and allows mimicking cellular transportation processes.
  • Item
    Enzymatic Synthesis of Poly(alkylene succinate)s: Influence of Reaction Conditions
    (Basel : MDPI, 2021) Pospiech, Doris; Choińska, Renata; Flugrat, Daniel; Sahre, Karin; Jehnichen, Dieter; Korwitz, Andreas; Friedel, Peter; Werner, Anett; Voit, Brigitte
    Application of lipases (preferentially Candida antarctica Lipase B, CALB) for melt polycondensation of aliphatic polyesters by transesterification of activated dicarboxylic acids with diols allows to displace toxic metal and metal oxide catalysts. Immobilization of the enzyme enhances the activity and the temperature range of use. The possibility to use enzyme-catalyzed polycondensation in melt is studied and compared to results of polycondensations in solution. The experiments show that CALB successfully catalyzes polycondensation of both, divinyladipate and dimethylsuccinate, respectively, with 1,4-butanediol. NMR spectroscopy, relative molar masses obtained by size exclusion chromatography, MALDI-TOF MS and wide-angle X-ray scattering are employed to compare the influence of synthesis conditions for poly(butylene adipate) (PBA) and poly(butylene succinate) (PBS). It is shown that the enzymatic activity of immobilized CALB deviates and influences the molar mass. CALB-catalyzed polycondensation of PBA in solution for 24 h at 70 °C achieves molar masses of up to Mw~60,000 g/mol, higher than reported previously and comparable to conventional PBA, while melt polycondensation resulted in a moderate decrease of molar mass to Mw~31,000. Enzymatically catalyzed melt polycondensation of PBS yields Mw~23,400 g/mol vs. Mw~40,000 g/mol with titanium(IV)n-butoxide. Melt polycondensation with enzyme catalysis allows to reduce the reaction time from days to 3–4 h.