Search Results

Now showing 1 - 6 of 6
  • Item
    Improving the flame retardance of polyisocyanurate foams by dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide-containing additives
    (Basel : MDPI, 2019) Lenz, Johannes; Pospiech, Doris; Paven, Maxime; Albach, Rolf W.; Günther, Martin; Schartel, Bernhard; Voit, Brigitte
    A series of new flame retardants (FR) based on dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO) incorporating acrylates and benzoquinone were developed previously. In this study, we examine the fire behavior of the new flame retardants in polyisocyanurate (PIR) foams. The foam characteristics, thermal decomposition, and fire behavior are investigated. The fire properties of the foams containing BPPO-based derivatives were found to depend on the chemical structure of the substituents. We also compare our results to state-of-the-art non-halogenated FR such as triphenylphosphate and chemically similar phosphinate, i.e. 9,10-dihydro-9-oxa-10- phosphaphenanthrene-10-oxide (DOPO), based derivatives to discuss the role of the phosphorus oxidation state.
  • Item
    In situ preparation of crosslinked polymer electrolytes for lithium ion batteries
    (Basel : MDPI, 2020) Röchow, Eike T.; Coeler, Matthias; Pospiech, Doris; Kobsch, Oliver; Mechtaeva, Elizaveta; Vogel, Roland; Voit, Brigitte; Nikolowski, Kristian; Wolter, Mareike
    Solid polymer electrolytes for bipolar lithium ion batteries requiring electrochemical stability of 4.5 V vs. Li/Li+ are presented. Thus, imidazolium-containing poly(ionic liquid) (PIL) networks were prepared by crosslinking UV-photopolymerization in an in situ approach (i.e., to allow preparation directly on the electrodes used). The crosslinks in the network improve the mechanical stability of the samples, as indicated by the free-standing nature of the materials and temperature-dependent rheology measurements. The averaged mesh size calculated from rheologoical measurements varied between 1.66 nm with 10 mol% crosslinker and 4.35 nm without crosslinker. The chemical structure of the ionic liquid (IL) monomers in the network was varied to achieve the highest possible ionic conductivity. The systematic variation in three series with a number of new IL monomers offers a direct comparison of samples obtained under comparable conditions. The ionic conductivity of generation II and III PIL networks was improved by three orders of magnitude, to the range of 7.1 × 10−6 S·cm−1 at 20 °C and 2.3 × 10−4 S·cm−1 at 80 °C, compared to known poly(vinylimidazolium·TFSI) materials (generation I). The transition from linear homopolymers to networks reduces the ionic conductivity by about one order of magnitude, but allows free-standing films instead of sticky materials. The PIL networks have a much higher voltage stability than PEO with the same amount and type of conducting salt, lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). GII-PIL networks are electrochemically stable up to a potential of 4.7 V vs. Li/Li+, which is crucial for a potential application as a solid electrolyte. Cycling (cyclovoltammetry and lithium plating-stripping) experiments revealed that it is possible to conduct lithium ions through the GII-polymer networks at low currents. We concluded that the synthesized PIL networks represent suitable candidates for solid-state electrolytes in lithium ion batteries or solid-state batteries.
  • Item
    Synthesis and characterization of stiff, self-crosslinked thermoresponsive DMAA hydrogels
    (Basel : MDPI, 2020) Rueda, Juan Carlos; Santillán, Fátima; Komber, Hartmut; Voit, Brigitte
    Stiff thermosensitive hydrogels (HG) were synthesized by self-crosslinking free radical polymerization of N,N-dimethylacrylamide (DMAA) and N-isopropylacrylamide (NIPAAm), adjusting the degree of swelling by carboxylate-containing sodium acrylate (NaAc) or a 2-oxazoline macromonomer (MM). The formation of hydrogels was possible due to the self-crosslinking property of DMAA when polymerized with peroxodisulfate initiator type. The MM was synthetized by the ring-opening cationic polymerization of 2-methyl-2-oxazoline (MeOxa) and methyl-3-(oxazol-2-yl)-propionate (EsterOxa), and contained a polymerizable styryl endgroup. After ester hydrolysis of EsterOxa units, a carboxylate-containing MM was obtained. The structure of the hydrogels was confirmed by 1H high-resolution (HR)-MAS NMR spectroscopy. Suitable conditions and compositions of the comonomers have been found, which allowed efficient self-crosslinking as well as a thermoresponsive swelling in water. Incorporation of both the polar comonomer and the macromonomer, in small amounts furthermore allowed the adjustment of the degree of swelling. However, the macromonomer was better suited to retain the thermoresponsive behavior of the poly (NIPAAm) due to a phase separation of the tangling polyoxazoline side chains. Thermogravimetric analysis determined that the hydrogels were stable up to ~ 350 °C, and dynamic mechanical analysis characterized a viscoelastic behavior of the hydrogels, properties that are required, for example, for possible use as an actuator material.
  • Item
    Aerogels based on reduced graphene oxide/cellulose composites: Preparation and vapour sensing abilities
    (Basel : MDPI, 2020) Chen, Yian; Pötschke, Petra; Pionteck, Jürgen; Voit, Brigitte; Qi, Haisong
    This paper reports on the preparation of cellulose/reduced graphene oxide (rGO) aerogels for use as chemical vapour sensors. Cellulose/rGO composite aerogels were prepared by dissolving cellulose and dispersing graphene oxide (GO) in aqueous NaOH/urea solution, followed by an in-situ reduction of GO to reduced GO (rGO) and lyophilisation. The vapour sensing properties of cellulose/rGO composite aerogels were investigated by measuring the change in electrical resistance during cyclic exposure to vapours with varying solubility parameters, namely water, methanol, ethanol, acetone, toluene, tetrahydrofuran (THF), and chloroform. The increase in resistance of aerogels on exposure to vapours is in the range of 7 to 40% with methanol giving the highest response. The sensing signal increases almost linearly with the vapour concentration, as tested for methanol. The resistance changes are caused by the destruction of the conductive filler network due to a combination of swelling of the cellulose matrix and adsorption of vapour molecules on the filler surfaces. This combined mechanism leads to an increased sensing response with increasing conductive filler content. Overall, fast reaction, good reproducibility, high sensitivity, and good differentiation ability between different vapours characterize the detection behaviour of the aerogels. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Melt-mixed PP/MWCNT composites: Influence of CNT incorporation strategy and matrix viscosity on filler dispersion and electrical resistivity
    (Basel : MDPI, 2019) Pötschke, Petra; Mothes, Fanny; Krause, Beate; Voit, Brigitte
    Small-scale melt mixing was performed for composites based on polypropylene (PP) and 0.5–7.5 wt % multiwalled carbon nanotubes (MWCNT) to determine if masterbatch (MB) dilution is a more effective form of nanofiller dispersion than direct nanotube incorporation. The methods were compared using composites of five different PP types, each filled with 2 wt % MWCNTs. After the determination of the specific mechanical energy (SME) input in the MB dilution process, the direct-incorporation mixing time was adjusted to achieve comparable SME values. Interestingly, the electrical resistivity of MB-prepared samples with 2 wt % MWCNTs was higher than that of those prepared using direct incorporation—despite their better dispersion—suggesting more pronounced MWCNT shortening in the two-step procedure. In summary, this study on PP suggests that the masterbatch approach is suitable for the dispersion of MWCNTs and holds advantages in nanotube dispersion, albeit at the cost of slightly increased electrical resistivity.
  • Item
    Charge Carrier Mobility Improvement in Diketopyrrolopyrrole Block-Copolymers by Shear Coating
    (Basel : MDPI, 2021) Ditte, Kristina; Kiriy, Nataliya; Perez, Jonathan; Hambsch, Mike; Mannsfeld, Stefan C.B.; Krupskaya, Yulia; Maragani, Ramesh; Voit, Brigitte; Lissel, Franziska
    Shear coating is a promising deposition method for upscaling device fabrication and enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing. Although common polymer semiconductors (PSCs) are solution processible, they are still prone to mechanical failure upon stretching, limiting applications in e.g., electronic skin and health monitoring. Progress made towards mechanically compliant PSCs, e.g., the incorporation of soft segments into the polymer backbone, could not only allow such applications, but also benefit advanced fabrication methods, like roll-to-roll printing on flexible substrates, to produce the targeted devices. Tri-block copolymers (TBCs), consisting of an inner rigid semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) block flanked by two soft elastomeric poly(dimethylsiloxane) (PDMS) chains, maintain good charge transport properties, while being mechanically soft and flexible. Potentially aiming at the fabrication of TBC-based wearable electronics by means of cost-efficient and scalable deposition methods (e.g., blade-coating), a tolerance of the electrical performance of the TBCs to the shear speed was investigated. Herein, we demonstrate that such TBCs can be deposited at high shear speeds (film formation up to a speed of 10 mm s−1). While such high speeds result in increased film thickness, no degradation of the electrical performance was observed, as was frequently reported for polymer−based OFETs. Instead, high shear speeds even led to a small improvement in the electrical performance: mobility increased from 0.06 cm2 V−1 s−1 at 0.5 mm s−1 to 0.16 cm2 V−1 s−1 at 7 mm s−1 for the TBC with 24 wt% PDMS, and for the TBC containing 37 wt% PDMS from 0.05 cm2 V−1 s−1 at 0.5 mm s−1 to 0.13 cm2 V−1 s−1 at 7 mm s−1. Interestingly, the improvement of mobility is not accompanied by any significant changes in morphology.