Search Results

Now showing 1 - 8 of 8
  • Item
    The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation
    (München : European Geopyhsical Union, 2016) Engelmann, Ronny; Kanitz, Thomas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Skupin, Annett; Wandinger, Ulla; Komppula, Mika; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Mattis, Ina; Linné, Holger; Ansmann, Albert
    The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24∕7 monitoring of the atmospheric state with PollyXT.
  • Item
    EARLINET instrument intercomparison campaigns: Overview on strategy and results
    (München : European Geopyhsical Union, 2016) Wandinger, Ulla; Freudenthaler, Volker; Baars, Holger; Amodeo, Aldo; Engelmann, Ronny; Mattis, Ina; Groß, Silke; Pappalardo, Gelsomina; Giunta, Aldo; D'Amico, Giuseppe; Chaikovsky, Anatoli; Osipenko, Fiodor; Slesar, Alexander; Nicolae, Doina; Belegante, Livio; Talianu, Camelia; Serikov, Ilya; Linné, Holger; Jansen, Friedhelm; Apituley, Arnoud; Wilson, Keith M.; de Graaf, Martin; Trickl, Thomas; Giehl, Helmut; Adam, Mariana; Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Sicard, Michaël; Tomás, Sergio; Lange, Diego; Kumar, Dhiraj; Pujadas, Manuel; Molero, Francisco; Fernández, Alfonso J.; Alados-Arboledas, Lucas; Bravo-Aranda, Juan Antonio; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Granados-Muñoz, María José; Preißler, Jana; Wagner, Frank; Gausa, Michael; Grigorov, Ivan; Stoyanov, Dimitar; Iarlori, Marco; Rizi, Vincenco; Spinelli, Nicola; Boselli, Antonella; Wang, Xuan; Feudo, Teresa Lo; Perrone, Maria Rita; De Tomas, Ferdinando; Burlizzi, Pasquale
    This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2 %. Particle backscatter and extinction coefficients agree within ±2  ×  10−4 km−1 sr−1 and ± 0.01 km−1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.
  • Item
    Relationship between temperature and apparent shape of pristine ice crystals derived from polarimetric cloud radar observations during the ACCEPT campaign
    (München : European Geopyhsical Union, 2016) Myagkov, Alexander; Seifert, Patric; Wandinger, Ulla; Bühl, Johannes; Engelmann, Ronny
    This paper presents first quantitative estimations of apparent ice particle shape at the top of liquid-topped clouds. Analyzed ice particles were formed under mixed-phase conditions in the presence of supercooled water and in the temperature range from −20 to −3 °C. The estimation is based on polarizability ratios of ice particles measured by a Ka-band cloud radar MIRA-35 with hybrid polarimetric configuration. Polarizability ratio is a function of the geometrical axis ratio and the dielectric properties of the observed hydrometeors. For this study, 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign were used. Polarizability ratios retrieved for cloud layers with the cloud-top temperatures of  ∼ −5,  ∼ −8,  ∼ −15, and  ∼ −20 °C were 1.6, 0.9, 0.6, and 0.9, respectively. Such values correspond to prolate, quasi-isotropic, oblate, and quasi-isotropic particles, respectively. Data from a free-fall chamber were used for the comparison. A good agreement of detected apparent shapes with well-known shape–temperature dependencies observed in laboratories was found. Polarizability ratios used for the analysis were estimated for areas located close to the cloud top, where aggregation and riming processes do not strongly affect ice particles. We concluded that, in microwave scattering models, ice particles detected in these areas can be assumed to have pristine shapes. It was also found that even slight variations of ambient conditions at the cloud top with temperatures warmer than  ∼ −5 °C can lead to rapid changes of ice crystal shape.
  • Item
    Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator
    (München : European Geopyhsical Union, 2016) Bravo-Aranda, Juan Antonio; Belegante, Livio; Freudenthaler, Volker; Alados-Arboledas, Lucas; Nicolae, Doina; Granados-Muñoz, María José; Guerrero-Rascado, Juan Luis; Amodeo, Aldo; D'Amico, Giusseppe; Engelmann, Ronny; Pappalardo, Gelsomina; Kokkalis, Panos; Mamouri, Rodanthy; Papayannis, Alex; Navas-Guzmán, Francisco; Olmo, Francisco José; Wandinger, Ulla; Amato, Francesco; Haeffelin, Martial
    Lidar depolarization measurements distinguish between spherical and non-spherical aerosol particles based on the change of the polarization state between the emitted and received signal. The particle shape information in combination with other aerosol optical properties allows the characterization of different aerosol types and the retrieval of aerosol particle microphysical properties. Regarding the microphysical inversions, the lidar depolarization technique is becoming a key method since particle shape information can be used by algorithms based on spheres and spheroids, optimizing the retrieval procedure. Thus, the identification of the depolarization error sources and the quantification of their effects are crucial. This work presents a new tool to assess the systematic error of the volume linear depolarization ratio (δ), combining the Stokes–Müller formalism and the complete sampling of the error space using the lidar model presented in Freudenthaler (2016a). This tool is applied to a synthetic lidar system and to several EARLINET lidars with depolarization capabilities at 355 or 532 nm. The lidar systems show relative errors of δ larger than 100 % for δ values around molecular linear depolarization ratios (∼ 0.004 and up to ∼  10 % for δ = 0.45). However, one system shows only relative errors of 25 and 0.22 % for δ = 0.004 and δ = 0.45, respectively, and gives an example of how a proper identification and reduction of the main error sources can drastically reduce the systematic errors of δ. In this regard, we provide some indications of how to reduce the systematic errors.
  • Item
    Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: Development and distribution in EARLINET
    (München : European Geopyhsical Union, 2016) Chaikovsky, Anatoli; Dubovik, Oleg; Holben, Brent; Bril, Andrey; Goloub, Philippe; Tanré, Didier; Pappalardo, Gelsomina; Wandinger, Ulla; Chaikovskaya, Ludmila; Denisov, Sergey; Grudo, Jan; Lopatin, Anton; Karol, Yana; Lapyonok, Tatsiana; Amiridis, Vassilis; Ansmann, Albert; Apituley, Arnoud; Allados-Arboledas, Lucas; Binietoglou, Ioannis; Boselli, Antonella; D'Amico, Giuseppe; Freudenthaler, Volker; Giles, David; Granados-Muñoz, María José; Kokkalis, Panayotis; Nicolae, Doina; Oshchepkov, Sergey; Papayannis, Alex; Perrone, Maria Rita; Pietruczuk, Alexander; Rocadenbosch, Francesc; Sicard, Michaël; Slutsker, Ilya; Talianu, Camelia; De Tomasi, Ferdinando; Tsekeri, Alexandra; Wagner, Janet; Wang, Xuan
    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data. The algorithm starts with the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLINET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.
  • Item
    An overview of the first decade of PollyNET: An emerging network of automated Raman-polarization lidars for continuous aerosol profiling
    (München : European Geopyhsical Union, 2016) Baars, Holger; Kanitz, Thomas; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Komppula, Mika; Preißler, Jana; Tesche, Matthias; Ansmann, Albert; Wandinger, Ulla; Lim, Jae-Hyun; Ahn, Joon Young; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Seifert, Patric; Hofer, Julian; Skupin, Annett; Schneider, Florian; Bohlmann, Stephanie; Foth, Andreas; Bley, Sebastian; Pfüller, Anne; Giannakaki, Eleni; Lihavainen, Heikki; Viisanen, Yrjö; Hooda, Rakesh Kumar; Pereira, Sérgio Nepomuceno; Bortol, Daniele; Wagner, Frank; Mattis, Ina; Janicka, Lucja; Markowicz, Krzysztof M.; Achtert, Peggy; Artaxo, Paulo; Pauliquevis, Theotonio; Souza, Rodrigo A.F.; Sharma, Ved Prakesh; van Zyl, Pieter Gideon; Beukes, Johan Paul; Sun, Junying; Rohwer, Erich G.; Deng, Ruru; Mamouri, Rodanthi-Elisavet; Zamorano, Felix
    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.
  • Item
    CALIPSO climatological products: Evaluation and suggestions from EARLINET
    (München : European Geopyhsical Union, 2016) Papagiannopoulos, Nikolaos; Mona, Lucia; Alados-Arboledas, Lucas; Amiridis, Vassilis; Baars, Holger; Binietoglou, Ioannis; Bortoli, Daniele; D'Amico, Giuseppe; Giunta, Aldo; Guerrero-Rascado, Juan Luis; Schwarz, Anja; Pereira, Sergio; Spinelli, Nicola; Wandinger, Ulla; Wang, Xuan; Pappalardo, Gelsomina
    The CALIPSO Level 3 (CL3) product is the most recent data set produced by the observations of the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud–Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) space platform. The European Aerosol Research Lidar Network (EARLINET), based mainly on multi-wavelength Raman lidar systems, is the most appropriate ground-based reference for CALIPSO calibration/validation studies on a continental scale. In this work, CALIPSO data are compared against EARLINET monthly averaged profiles obtained by measurements performed during CALIPSO overpasses. In order to mitigate uncertainties due to spatial and temporal differences, we reproduce a modified version of CL3 data starting from CALIPSO Level 2 (CL2) data. The spatial resolution is finer and nearly 2°  ×  2° (latitude  ×  longitude) and only simultaneous measurements are used for ease of comparison. The CALIPSO monthly mean profiles following this approach are called CALIPSO Level 3*, CL3*. We find good agreement on the aerosol extinction coefficient, yet in most of the cases a small CALIPSO underestimation is observed with an average bias of 0.02 km−1 up to 4 km and 0.003 km−1 higher above. In contrast to CL3 standard product, the CL3* data set offers the possibility to assess the CALIPSO performance also in terms of the particle backscatter coefficient keeping the same quality assurance criteria applied to extinction profiles. The mean relative difference in the comparison improved from 25 % for extinction to 18 % for backscatter, showing better performances of CALIPSO backscatter retrievals. Additionally, the aerosol typing comparison yielded a robust identification of dust and polluted dust. Moreover, the CALIPSO aerosol-type-dependent lidar ratio selection is assessed by means of EARLINET observations, so as to investigate the performance of the extinction retrievals. The aerosol types of dust, polluted dust, and clean continental showed noticeable discrepancy. Finally, the potential improvements of the lidar ratio assignment have been examined by adjusting it according to EARLINET-derived values.
  • Item
    Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign
    (München : European Geopyhsical Union, 2016) Granados-Muñoz, María José; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Bravo-Aranda, Juan Antonio; Pereira, Sergio Nepomuceno; Basart, Sara; Baldasano, José María; Belegante, Livio; Chaikovsky, Anatoli; Comerón, Adolfo; D'Amico, Giuseppe; Dubovik, Oleg; Ilic, Luka; Kokkalis, Panos; Muñoz-Porcar, Constantino; Nickovic, Slobodan; Nicolae, Doina; Facchini, Maria Cristina; Olmo, Francisco José; Papayannis, Alexander; Pappalardo, Gelsomina; Rodríguez, Alejandro; Schepanski, Kerstin; Sicard, Michaël; Vukovic, Ana; Wandinger, Ulla; Dulac, François; Alados-Arboledas, Lucas
    The simultaneous analysis of aerosol microphysical properties profiles at different European stations is made in the framework of the ChArMEx/EMEP 2012 field campaign (9–11 July 2012). During and in support of this campaign, five lidar ground-based stations (Athens, Barcelona, Bucharest, Évora, and Granada) performed 72 h of continuous lidar measurements and collocated and coincident sun-photometer measurements. Therefore it was possible to retrieve volume concentration profiles with the Lidar Radiometer Inversion Code (LIRIC). Results indicated the presence of a mineral dust plume affecting the western Mediterranean region (mainly the Granada station), whereas a different aerosol plume was observed over the Balkans area. LIRIC profiles showed a predominance of coarse spheroid particles above Granada, as expected for mineral dust, and an aerosol plume composed mainly of fine and coarse spherical particles above Athens and Bucharest. Due to the exceptional characteristics of the ChArMEx database, the analysis of the microphysical properties profiles' temporal evolution was also possible. An in-depth analysis was performed mainly at the Granada station because of the availability of continuous lidar measurements and frequent AERONET inversion retrievals. The analysis at Granada was of special interest since the station was affected by mineral dust during the complete analyzed period. LIRIC was found to be a very useful tool for performing continuous monitoring of mineral dust, allowing for the analysis of the dynamics of the dust event in the vertical and temporal coordinates. Results obtained here illustrate the importance of having collocated and simultaneous advanced lidar and sun-photometer measurements in order to characterize the aerosol microphysical properties in both the vertical and temporal coordinates at a regional scale. In addition, this study revealed that the use of the depolarization information as input in LIRIC in the stations of Bucharest, Évora, and Granada was crucial for the characterization of the aerosol types and their distribution in the vertical column, whereas in stations lacking depolarization lidar channels, ancillary information was needed. Results obtained were also used for the validation of different mineral dust models. In general, the models better forecast the vertical distribution of the mineral dust than the column-integrated mass concentration, which was underestimated in most of the cases.