Search Results

Now showing 1 - 3 of 3
  • Item
    A trend-preserving bias correction – The ISI-MIP approach
    (München : European Geopyhsical Union, 2013) Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F.
    Statistical bias correction is commonly applied within climate impact modelling to correct climate model data for systematic deviations of the simulated historical data from observations. Methods are based on transfer functions generated to map the distribution of the simulated historical data to that of the observations. Those are subsequently applied to correct the future projections. Here, we present the bias correction method that was developed within ISI-MIP, the first Inter-Sectoral Impact Model Intercomparison Project. ISI-MIP is designed to synthesise impact projections in the agriculture, water, biome, health, and infrastructure sectors at different levels of global warming. Bias-corrected climate data that are used as input for the impact simulations could be only provided over land areas. To ensure consistency with the global (land + ocean) temperature information the bias correction method has to preserve the warming signal. Here we present the applied method that preserves the absolute changes in monthly temperature, and relative changes in monthly values of precipitation and the other variables needed for ISI-MIP. The proposed methodology represents a modification of the transfer function approach applied in the Water Model Intercomparison Project (Water-MIP). Correction of the monthly mean is followed by correction of the daily variability about the monthly mean. Besides the general idea and technical details of the ISI-MIP method, we show and discuss the potential and limitations of the applied bias correction. In particular, while the trend and the long-term mean are well represented, limitations with regards to the adjustment of the variability persist which may affect, e.g. small scale features or extremes.
  • Item
    A framework for the cross-sectoral integration of multi-model impact projections: Land use decisions under climate impacts uncertainties
    (München : European Geopyhsical Union, 2015) Frieler, K.; Levermann, A.; Elliott, J.; Heinke, J.; Arneth, A.; Bierkens, M.F.P.; Ciais, P.; Clark, D.B.; Deryng, D.; Döll, P.; Falloon, P.; Fekete, B.; Folberth, C.; Friend, A.D.; Gellhorn, C.; Gosling, S.N.; Haddeland, I.; Khabarov, N.; Lomas, M.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A.C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.; Huber, V.; Piontek, F.; Warszawski, L.; Schewe, J.; Lotze-Campen, H.; Schellnhuber, H.J.
    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.
  • Item
    Climate impact research: Beyond patchwork
    (München : European Geopyhsical Union, 2014) Huber, V.; Schellnhuber, H.J.; Arnell, N.W.; Frieler, K.; Gerten, D.; Haddeland, I.; Kabat, P.; Lotze-Campen, H.; Lucht, W.; Parry, M.; Piontek, F.; Rosenzweig, C.; Schewe, J.; Warszawski, L.
    Despite significant progress in climate impact research, the narratives that science can presently piece together of a 2, 3, 4, or 5 °C warmer world remain fragmentary. Here we briefly review past undertakings to characterise comprehensively and quantify climate impacts based on multi-model approaches. We then report on the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), a community-driven effort to compare impact models across sectors and scales systematically, and to quantify the uncertainties along the chain from greenhouse gas emissions and climate input data to the modelling of climate impacts themselves. We show how ISI-MIP and similar efforts can substantially advance the science relevant to impacts, adaptation and vulnerability, and we outline the steps that need to be taken in order to make the most of the available modelling tools. We discuss pertinent limitations of these methods and how they could be tackled. We argue that it is time to consolidate the current patchwork of impact knowledge through integrated cross-sectoral assessments, and that the climate impact community is now in a favourable position to do so.