Search Results

Now showing 1 - 2 of 2
  • Item
    Primary versus secondary contributions to particle number concentrations in the European boundary layer
    (München : European Geopyhsical Union, 2011) Reddington, C.L.; Carslaw, K.S.; Spracklen, D.V.; Frontoso, M.G.; Collins, L.; Merikanto, J.; Minikin, A.; Hamburger, T.; Coe, H.; Kulmala, M.; Aalto, P.; Flentje, H.; Plass-Dülmer, C.; Birmili, W.; Wiedensohler, A.; Wehner, B.; Tuch, T.; Sonntag, A.; O'Dowd, C.D.; Jennings, S.G.; Dupuy, R.; Baltensperger, U.; Weingartner, E.; Hansson, H.-C.; Tunved, P.; Laj, P.; Sellegri, K.; Boulon, J.; Putaud, J.-P.; Gruening, C.; Swietlicki, E.; Roldin, P.; Henzing, J.S.; Moerman, M.; Mihalopoulos, N.; Kouvarakis, G.; Ždímal, V.; Zíková, N.; Marinoni, A.; Bonasoni, P.; Duchi, R.
    It is important to understand the relative contribution of primary and secondary particles to regional and global aerosol so that models can attribute aerosol radiative forcing to different sources. In large-scale models, there is considerable uncertainty associated with treatments of particle formation (nucleation) in the boundary layer (BL) and in the size distribution of emitted primary particles, leading to uncertainties in predicted cloud condensation nuclei (CCN) concentrations. Here we quantify how primary particle emissions and secondary particle formation influence size-resolved particle number concentrations in the BL using a global aerosol microphysics model and aircraft and ground site observations made during the May 2008 campaign of the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI). We tested four different parameterisations for BL nucleation and two assumptions for the emission size distribution of anthropogenic and wildfire carbonaceous particles. When we emit carbonaceous particles at small sizes (as recommended by the Aerosol Intercomparison project, AEROCOM), the spatial distributions of campaign-mean number concentrations of particles with diameter >50 nm (N50) and >100 nm (N100) were well captured by the model (R2≥0.8) and the normalised mean bias (NMB) was also small (−18% for N50 and −1% for N100). Emission of carbonaceous particles at larger sizes, which we consider to be more realistic for low spatial resolution global models, results in equally good correlation but larger bias (R2≥0.8, NMB = −52% and −29%), which could be partly but not entirely compensated by BL nucleation. Within the uncertainty of the observations and accounting for the uncertainty in the size of emitted primary particles, BL nucleation makes a statistically significant contribution to CCN-sized particles at less than a quarter of the ground sites. Our results show that a major source of uncertainty in CCN-sized particles in polluted European air is the emitted size of primary carbonaceous particles. New information is required not just from direct observations, but also to determine the "effective emission size" and composition of primary particles appropriate for different resolution models.
  • Item
    Evolution of particle composition in CLOUD nucleation experiments
    (München : European Geopyhsical Union, 2013) Keskinen, H.; Virtanen, A.; Joutsensaari, J.; Tsagkogeorgas, G.; Duplissy, J.; Schobesberger, S.; Gysel, M.; Riccobono, F.; Slowik, J.G.; Bianchi, F.; Yli-Juuti, T.; Lehtipalo, K.; Rondo, L.; Breitenlechner, M.; Kupc, A.; Almeida, J.; Amorim, A.; Dunne, E.M.; Downard, A.J.; Ehrhart, S.; Franchin, A.; Kajos, M.K.; Kirkby, J.; Kürten, A.; Nieminen, T.; Makhmutov, V.; Mathot, S.; Miettinen, P.; Onnela, A.; Petäjä, T.; Praplan, A.; Santos, F.D.; Schallhart, S.; Sipilä, M.; Stozhkov, Y.; Tomé, A.; Vaattovaara, P.; Wimmer, D.; Prevot, A.; Dommen, J.; Donahue, N.M.; Flagan, R.C.; Weingartner, E.; Viisanen, Y.; Riipinen, I.; Hansel, A.; Curtius, J.; Kulmala, M.; Worsnop, D.R.; Baltensperger, U.; Wex, H.; Stratmann, F.; Laaksonen, A.
    Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre européen pour la recherche nucléaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts). In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ~0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid, ammonia, dimethylamine and organic oxidation products.